GPU-Based Complex-Background Segmentation Using Neural Networks

Dubravko Culibrk and Vladimir Crnojevi¢?
Faculty of Technical Sciences
University of Novi Sad
Trg Dositeja Obradovi¢a, 21000 Novi Sad, Serbia
dculibrk @uns.ac.rs', (:rnojevi(:@uns.ac.rs]t

Abstract

Moving object detection in visual surveillance videos is
usually accomplished through foreground-background seg-
mentation. When segmentation of interesting moving ob-
Jjects from the background is to be done in the presence of
moving objects in the background itself, the process calls
for the use of complex probabilistic background models.
Maintaining such models is computationally intensive and
limits the real-time applications of such methodologies to
low resolution sequences, far below the acquisition ability
of state-of-the-art cameras. While most probabilistic fore-
ground segmentation approaches can benefit from parallel
processing, since they allow for parallelization of opera-
tions done for each pixel, the Background Modelling Neu-
ral Networks (BNNs) allow the process to be parallelized
even further, at the level of feature patterns stored in the
model for each pixel. The paper presents a parallel imple-
mentation of BNN based moving object segmentation, run-
ning on NVIDIATM Graphics Processing Unit (GPU). Sev-
eral modifications to the original algorithm are proposed
to make for an efficient implementation. Experiments show
that the approach is able to achieve real time processing of
Standard Definition (SD) video in real time, never before
reported for a probabilistic approach.

1 Introduction

Object segmentation is a fundamental computer vision
problem and plays a key role in various applications. Mov-
ing object segmentation in particular is extensively used in
automated surveillance [5][10][14], which is the focus of
the work presented here.

Over the past 25 years significant research effort has
been spent on developing ways of segmenting the mov-
ing foreground objects from the background. When video
is captured from a stationary camera, which is a common
assumption in surveillance, the background is expected to

be stationary to a degree and an adaptive model can be
built to serve as basis for segmentation. A special class of
hard segmentation problems is concerned with applications
dealing with natural-scene sequences with complex back-
ground motion (e.g. trees moving in the wind, rippling wa-
ter, etc.) and changes in illumination, where the stationary
background assumption is seriously compromised. When
this is the case, state-of-the-art published solutions rely on
multi-modal probability estimates of pixel values occurring
in the background, as the background model, and statisti-
cal tests to determine the likelihood of a pixel belonging to
the estimated probability distribution (i.e. background) to
achieve foreground segmentation [5][6][10][14]. Unfortu-
nately, the process of building and maintaining probabilistic
models and performing segmentation in this manner is com-
putationally expensive and allows for real-time segmenta-
tion to be performed only for low resolution videos, typi-
cally QCIF or CIF [10][5]. What is more, real-time perfor-
mance cannot be achieved for more complex kernel-based
methods [6][13].

GPUs are especially well-suited to address problems that
can be expressed as data-parallel computations (the same
program is executed on many data elements in parallel) with
high arithmetic intensity (the ratio of arithmetic operations
to memory operations). Because the same program is ex-
ecuted for each data element, there is a lower requirement
for sophisticated flow control; and because it is executed
on many data elements and has high arithmetic intensity,
the memory access latency can be hidden with calculations
instead of big data caches [1]. Many computer vision op-
erations map efficiently onto the modern GPU, whose pro-
grammability allows a wide variety of computer vision al-
gorithms to be implemented [9].

Background Modelling Neural Networks (BNN) rep-
resent a recently proposed kernel-based foreground-
background segmentation methodology designed specifi-
cally with a parallel implementation in mind [5], as the only
way to achieve real-time segmentation of high-resolution
complex natural-scene sequences. The approach exploits



inherent traits of neural networks to enable parallelization
of the process at a sub-pixel level. Here an NVIDIATM
Graphics Processing Unit (GPU) based implementation of
the BNN approach is described which allows for real-time
processing of Standard Definition (SD) sequences. Sev-
eral modifications of the original algorithm are proposed to
make for an efficient implementation. The implementation
described relies on NVIDIA Compute Unified Device Ar-
chitecture (CUDA) [1] and OpenCV [3] technology. The re-
sult has been tested on a large set of sequences standard for
the domain in question. the implementation achieves seg-
mentation of 10 frames per second (fps) for SD sequences
and over 60 fps for (160 x 128 pixel) sequences, including
the time it takes to load the video frames and display them.

2 RELATED WORK

Probabilistic techniques represent the state-of-the-art in
foreground-background segmentation. They estimate the
statistics of the pixels corresponding to background and
use them to distinguish between the background and the
foreground[5][14][13][10]. A Gaussian-based statistical
model whose parameters are recursively updated in order
to follow gradual background changes within the video se-
quence has been proposed in[2]. More recently, Gaussian-
based modelling was significantly improved by employing
a Mixture of Gaussians (MoG) as a model for the proba-
bility density functions (PDFs) related to the distribution of
pixel values. Multiple Gaussian distributions, usually 3-5,
are used to approximate the PDFs [14]. MoG approach of
Stauffer and Grimson [14] is probably the most widely used
segmentation approach to date. Several improvements to
their original methodology have been made over the years
[15].

Gaussian-based models are parametric in the sense that
they incorporate underlying assumptions about the shape
of probability density functions (PDFs) they are trying to
estimate. This can lead to a rough approximation of the
(PDFs) and impact their performance [10]. Nonparametric
models have been receiving significant attention in recent
years. A nonparametric kernel density estimation frame-
work for foreground segmentation and object tracking for
visual surveillance has been proposed in [6]. The authors
present good qualitative results of the proposed system,
but do not evaluate segmentation quantitatively nor do they
compare their system with other methods. The framework
is computationally intensive as the number of kernels cor-
responds to the number of observed pixel values. In 2003,
Li et al. proposed a nonparametric method for foreground
object detection [10], which represents a hybrid between
the filter-based and probabilistic methodologies. The pri-
mary model of the background used by Li ef al. is a back-
ground image obtained through low pass filtering. The au-

thors use a secondary probabilistic model for the pixel val-
ues detected as foreground through frame-differencing be-
tween the current frame and the reference background im-
age. Their model is a histogram of pixel-values occurring
at a pixel location.

The approach based on background modelling neural
networks was proposed in [5]. The networks represent a
biologically plausible implementation of Bayesian classi-
fiers based on nonparametric kernel-based probability den-
sity estimators. The weights of the network store a model
of background, which is continuously updated. The PDF
estimates consist of a fixed number of kernels, which have
fixed width. Results superior to those of Li et al. and MoG
with 30 Gaussians are reported in [5]. The BNNs attempt
to address the problem of computational complexity of the
kernel-based background models by exploiting the paral-
lelism of neural networks.

GPUs are receiving increased attention in the computer
vision community[9], due to the sharpest rise in peak per-
formance when compared with CPUs and Field Program-
able Gate Arrays(FPGAs) of the same generation[7]. A sin-
gle GPU-based implementation of foreground segmentation
in the published literature has been described by Griesser et
al.[8]. Their approach is targeted for human-computer in-
terfaces in indoor environment and not suitable for segmen-
tation when the background undergoes complex changes,
since they use a static background image to represent the
background. Rather than creating the probabilistic model,
they derive more sophisticated features for pixel regions
and rely on a collinearity criterion to achieve segmentation.
Here we describe an implementation of a state-of-the-art
probabilistic model, capable of dealing with both indoor
and outdoor sequences with complex motion in the back-
ground.

3 Background-modelling Neural Network
(BNN)

Background Modelling Neural Network (BNN) is a neu-
ral network classifier designed specifically for foreground
segmentation in video sequences. The network is an unsu-
pervised learner. It collects statistics related to the dynamic
processes of pixel-feature-value changes. The learnt statis-
tics are used to classify a pixel as pertinent to a foreground
or background object in each frame of the sequence. A de-
tailed discussion of BNN approach, its segmentation perfor-
mance and applicability can be found in [5].

The BNN classifier strives to estimate the probability of
a pixel value X occurring at the same time as the event of a
background or foreground object being located at that par-
ticular pixel.

In the structure of BNN, shown in Figure 1, three distinct
subnets can be identified. The classification subnet is a cen-



Input units

Pattern units

Summation units

Thao AT AVl oav

. R . Output units
2 2,5 5 W0 i
NA I Y, Y, Y, Y,
BP
Activation Classification Replacement
Subnet Subnet Subnet

Figure 1. Structure of Background Modeling
Neural Network.

tral part of BNN concerned with approximating the PDF of
pixel feature values belonging to background/foreground.
It is a neural network implementation of a Parzen (kernel
based) estimator [12]. Weights between the pattern and
summation neurons of the classification subnet are used to
store the confidence with which a pattern belongs to the
background/foreground. The weights of these connections
are updated with each new pixel value received (i.e. with
each frame). The output of the classification subnet indi-
cates whether it is more probable that the input feature value
is due to a background object rather than a foreground ob-
ject.

The activation subnet is designed to determine which
of the neurons of the network has the maximum activation
(output) and whether that value exceeds a threshold (¢) pro-
vided as a parameter to the algorithm. If it does not, the
BNN is considered inactive and replacement of a pattern
neuron’s weights with the values of the current input vec-
tor is required. If this is the case, the feature is considered
to belong to a foreground object. The implementation de-
scribed in Section 4, uses an iterative approach to determine
the maximum output value of a pattern neuron and the in-
dex of the pattern neuron that generated the output, rather
than implementing the subnet itself. The current maximum
value is compared with the output of pattern neurons as they
are evaluated and replaced if need be. Once the maximum
output is determined it is compared with the threshold to
determine if the network is active. This simplified the im-
plementation without affecting performance.

The function of the replacement net is to determine the
pattern neuron that minimizes the replacement criterion.
The criterion is a mathematical expression of the idea that
those patterns that are least likely to belong to the back-
ground and those that provide least confidence to make the
decision should be eliminated from the model. Again, the
procedure is implemented as an iterative emulation of a
WTA network originally proposed for this purpose in [5].

To form a complete background-subtraction solution a sin-
gle instance of a BNN is used to model the features at each
pixel of the image.

4 BNNson a GPU

Our implementation of the BNN approach on a GPU
relies on NVIDIA’s Compute Unified Device Architecture
(CUDA). CUDA is a parallel programming model and soft-
ware environment designed to overcome the challenge of
developing application software that transparently scales
its parallelism to leverage the increasing number of GPU
processor cores, while maintaining a low learning curve
for programmers familiar with standard programming lan-
guages such as C [1]. A compiled CUDA program can exe-
cute on any number of processor cores, and only the runtime
system needs to know the physical processor count.

CUDA extends C by allowing the programmer to define
C functions, called kernels, that, when called, are executed
N times in parallel by N different CUDA threads. Due
to the limited number of registers available to each thread,
care should be given to keep the kernel code simple and
avoid control flow instructions. The threads are organized
in blocks. Threads within a block can cooperate among
themselves by sharing data through some shared memory
and synchronizing their execution to coordinate memory ac-
cesses. Blocks have to be designed so that they can be ex-
ecuted independently and in arbitrary order. Using a high
number of threads per block has the advantage of hiding the
latency of memory accesses to achieve maximum occupa-
tion of the multiprocessor computational units. The number
of threads per block is limited by hardware capabilities.

A typical flow of a program using CUDA involves start-
ing the CPU part of the application on the host computer,
which then transfers the input data to GPU device memory
and invokes a kernel. Once the kernel completes the exe-
cution the data can be transferred from the device memory
back to the host memory. To minimize memory access la-
tency, the data stored in device memory, should be suitably
aligned and preferably accessed as successive 32 bit words.

The BNN approach described in Section 3 allows for
computations to be parallelized at the level of single pattern
neurons. Fig. 2 shows the program flow of the GPU im-
plementation for a single input sequence frame. The CUDA
kernels are listed on the right-hand side of the figure, in the
shaded rectangle. The CPU subroutines of the algorithm are
listed on the left-hand side. The frames of the video are read
by the CPU. The response of each of the patterns stored in
the PNN is evaluated separately on the GPU, the summa-
tion neuron state incremented and the the function of the
WTA network emulated by comparing the maximum value
determined up to that point with the response of the pattern
neuron evaluated. Once all the pattern-neuron responses



have been evaluated, foreground segmentation is performed
by determining which pixel-related BNNs show low activ-
ity and evaluating the output for active BNNs. After the
segmentation, the weights of the PNN subnets are updated
and replacement criteria evaluated for each pattern neuron.
Finally, required pattern neurons are replaced by the CPU
(host). Probabilistic background subtraction usually relies
on postprocessing to remove single pixel effects and small
components from the segmentation mask. This step is also
performed by the CPU. The postprocessing used, relied on
removing connected components smaller than an expected
object size.

We experimented with two different setups with respect
to memory usage. In the first the BNNs were primarily
stored in the host memory and pattern weights for each
pattern copied to the device memory when needed and re-
trieved afterwards. In the second, all the BNN data was
stored in the GPU, reducing the number of data transfers be-
tween the GPU and the host, but increasing the GPU mem-
ory requirements. The data transfers eliminated are indi-
cated in color in Fig. 2.

P’;/‘R
for each patte propagatePNNSinglePatterr

calculateParzenKernelPattern
emulateWTAPattern
incrementSummationNeuronsPattern

—
P decideFGBG

updatePNN

getNeuronsToReplace

Figure 2. Program flow of GPU implementa-
tion.

——Gopy.___|_updateWeights

for each pattern

} CalculateCriterion
Qp SmulateWTAPattern

5 Results

In addition to CUDA SDK, we used OpenCV for
video input and output, as well as the postprocessing of
the results. The code is available at http://www.
dubravkoculibrk.org/BNN for research purposes.

We evaluated the algorithm using a large number (30+)
of publicly available sequences related to surveillance.
The data included complex-background data sets used in
[S1[10][11][4], as well real-world surveillance sequences
collected by our research group. Since the GPU imple-
mentation does not affect the segmentation accuracy, we
focus on computational performance. Nevertheless, Fig.

3 shows sample segmentation frames obtained for several
sequences. Images in the middle correspond to the output
of the neural networks. Green pixels correspond to values
that were already in the model, but were classified as fore-
ground. The yellow pixels correspond to inactive BNNSs, i.e.
pixels not currently in the background model. Post process-
ing was performed using connected-components analysis
available within OpenCV. The holes in the foreground ob-
jects were filled and objects with bounding-box area smaller
than 200 pixels were removed.

Tests were run on two different NVIDIA GPUs: Some-
what outdated GeForce 8400M GS designed for portable
computers, which has 16 CUDA cores, 256 MB of memory
and a core clock of 400 MHz and GeForce GTS 250, which
has 128 CUDA cores, 1 GB of memory and a core clock
of 738 MHz. Table 1 shows the running times obtained for
GeForce 8400M on sequences with commonly used reso-
lutions, for both the approach based on the BNNs stored
in GPU (A time) and host memory (B time). The running
times were obtained for BNNs containing 10 pattern neu-
rons, running 256 threads on 8400M and 384 threads on
250 GTS. Learning rate () was set to 0.05, the activation
threshold (f) was set to 0.5 and the smoothing parameter
(o) to 7. The numbers shown do not include postprocessing,
but include the time needed to do data transfers between the
host and the device. Frame rates of 10-15 frames per second
(67-100 ms/frame) on 160 x 120 frames are usually consid-
ered enough for real-time processing complex-background
algorithms [5][14][10]. As Table 1 indicates, BNN ap-
proach, when implemented on GPU is able to achieve real-
time segmentation of Standard Definition (SD) television
sequences. In the case of 160 x 128 resolution sequences,
such as ”Curtain”, it achieved a processing time below 1
ms (averaged over 10 runs). This represents an order of
magnitude speedup (environ 60 times) wrt. results reported
by Li et al. for their approach. The speed of the application
is in this case dominated by the frame input and output op-
erations, rather than the processing. The elimination of ad-
ditional data transfers between the host and device resulted
in average speedup of 1.38 times for 8400M GS and 1.51
times for 250 GTS, in general.

6 Conclusion

In the paper a GPU-based implementation of a state-of-
the-art probabilistic foreground segmentation algorithm is
described using CUDA and OpenCV. The implementation
enables segmentation to be performed in the presence of
complex backgrounds at frame rates and resolutions never
reported before for any probabilistic approach, as well as
making the BNN approach able to achieve segmentation in
real-time. BNN-based foreground segmentation, running
on commercial programmable graphics hardware, is capa-



Test sequence Resolution Frames A time (ms/frame) | B time (ms/frame)
8400M \ 250 GTS | 8400M \ 250 GTS
”Curtain” 160x128 (QCIF) | 2960 33 <1 54 16
”Water” 320x240 203 93 15.7 130 31
”Container” 352x288(CIF) 300 120 31 165 47
”Bridge” 384x288 2250 130 24 180 47
”Tunnel” 720x576 (SD) 9018 N/A 95 542 145

Table 1. Running times for NVIDIA GeForce 8400M GS and 250 GTS: A-BNNs stored on device, B-

BNNs stored on host.

ble of handling Standard Definition (SD) television video in
real-time and can process 160 x 128 resolution sequences at
speeds dominated by the time it takes to load video frames
and transfer them to the GPU.

In addition to addressing several practical implementa-
tion aspects of the original algorithm, we proposed two
different strategies for storing the neural network data and
compared the results on a set of commonly used surveil-
lance videos. Future work will address the issues of moving
the processing completely to the GPU, including the post-
processing and to GPU- and neural-network-based tracking,
as a logical extension of the proposed methodology.

References

[1] Nvidia cuda programming guide version 2.0. http://
www.nvidia.com/object/cuda_develop.html,
Dec. 2008.

[2] T. Boult, R. Micheals, X.Gao, P. Lewis, C. Power, W. Yin,
and A. Erkan. Frame-rate omnidirectional surveillance and
tracking of camouflaged and occluded targets. In Proc. of
IEEE Workshop on Visual Surveillance, pp. 48-55, 1999.

[3] G. Bradski and A. Kaehler. Learning OpenCV: Computer
Vision with the OpenCV Library. O’Reilly, Cambridge, MA,
2008.

[4] D. Culibrk, B. Antic, and V. Crnojevic. Real-time stable
texture regions extraction for motion-based object segmen-
tation. In Proceedings of the 20th British Machine Vision
Conference (BMVC 2009), Sept. 2009.

[5] D. Culibrk, O. Marques, D. Socek, H. Kalva, and B. Furht.
Neural network approach to background modeling for video
object segmentation. In IEEE Trans. on Neural Networks,
vol. 18, number 6, pages 1614 — 1627. IEEE Press, Nov.
2007.

[6] A.ElGammal, R. Duraiswami, D. Harwood, and L. Davis.
Background and foreground modeling using nonparametric
kernel density estimation for visual surveillance. In Proc. of
the IEEE, vol. 90, No. 7, pp. 1151-1163, 2002.

[7] M. Gipp, G. Marcus, N. Harder, A. Suratanee, K. Rohr,
R. Knig, and R. Mnner. Haralicks texture features computed
by gpus for biological applications. IAENG International
Journal of Computer Science, 36(1), Feb. 2009.

[8] A. Griesser, S. D. Roeck, A. Neubeck, and L. V. Gool.
Gpu-based foreground—background segmentation using an
extended colinearity criterion. In Vision, Modeling, and Vi-
sualization (VMV 2005), Nov. 2005.

[9] S. Lefebvre, S. Hornus, and F. Neyret. GPU Gems 2 - Pro-
gramming Techniques for High-Performance Graphics and
General-Purpose Computation, chapter Computer Vision on
the GPU, pages 651-667. Addison Wesley, 2005.

[10] L. Li, W. Huang, I. Gu, and Q. Tian. Statistical modeling
of complex backgrounds for foreground object detection.
In IEEE Trans. Image Processing, vol. 13, pp. 1459-1472,
2004.

[11] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh. Back-
ground modeling and subtraction of dynamic scenes. In
ICCV °03: Proceedings of the Ninth IEEE International
Conference on Computer Vision, pages 1305-1312, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[12] E. Parzen. On estimation of a probability density function
and mode. In Ann. Math. Stat., Vol. 33, pp. 1065-1076, 1962.

[13] Y. Sheikh and M. Shah. Bayesian modeling of dynamic
scenes for object detection. In IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 27, pp. 1778-1792, 2005.

[14] C. Stauffer and W. Grimson. Learning patterns of activity
using real-time tracking. In IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 22, pp. 747-757, 2000.

[15] Z. Zivkovic. Improved adaptive gaussian mixture model
for background subtraction. In International Conference on
Pattern Recognition (ICPR), volume 2, pages 28-31, Aug.
2004.



(a) ”Curtain” sequence frame. (b) Segmentation. (c) Post-processed.

f

f
)

f

f r
?l*l !

M
‘)
“

r-‘
i

40

(e) Segmentation. (f) Post-processed.

(h) Segmentation. (i) Post-processed.

(j) ”Bridge” sequence frame. (k) Segmentation. (1) Post-processed.

L

(m) ”Tunnel” sequence frame. (n) Segmentation. (p) Post-processed.

Figure 3. Segmentation results for sample frames.



