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Neural Network Approach to Background Modeling
for Video Object Segmentation

DubravkoCulibrk™, Oge Marques Daniel Socek Hari Kalvé, Borko Furht

Abstract—The paper presents a novel background modeling ~ The goal of the video object segmentation is to separate
and subtraction approach for video object segmentation. A pixels corresponding to foreground from those correspumndi
neural network architecture is proposed to form an unsupervise to background.

Bayesian classifier for this application domain. The constructed If the state of the back d is k f f
classifier efficiently handles the segmentation in natural-scene e state or the background IS nown_ o_r eve_:ry _rame
sequences with complex background motion and changes in of the sequence and there are no changes in illumination, the
illumination. The weights of the proposed neural network serve segmentation can be accomplished by a simple comparison
as a model of the background and are temporally updated to petween the background image and a frame of the sequence.
reflect the observed statistics of background. The segmentatio This however. is unrealistic for almost all applicatiolsthe
performance of the proposed neural network is qualitatively and b X h ' t del for the back d has to b
quantitatively examined and compared to two extant probabilistic a gence oFan exac mo. etfor .e .ac ground, oné has to be
object segmentation algorithms, based on a previously published €stimated based on the information in the sequence and some
test pool containing diverse surveillance-related sequences. &h assumptions. The process of modeling the background and
proposed algorithm is parallelized on a sub-pixel level and determining the foreground by comparison with the frames of
designed to enable efficient hardware implementation. the sequence is often referred tolzckground subtractian

Index Terms— Object segmentation, Neural networks, Video  Two broad classes of background-subtraction methods can
processing, Background subtraction, Automated surveillance. be identified:

1) Filter based background subtraction.

. INTRODUCTION 2) Probabilistic background subtraction.

HE rapid increase in the amount of multimedia content Filtér based approaches were developed first and rely on
T produced by our society is a powerful driving forces0me sort of low-pass filtering of the frames of the sequence t

behind the significant scientific effort spent on developingPt@in @ model of the background in the form of a background
automatic methods to infer meaning of this content. A vitdl"29€- Their main weakness is the inherent assumption of the

part of this work is directed towards the analysis of videBackground changing more slowly than the foreground. High

sequences. Object segmentation represents a basic tasK§AUENcy motion in the background such as that of moving

video processing and the foundation of scene understa,ndiH&mCheS or waves often leads to.misclassification. of these
various surveillance applications, as well as the emergifgckaround objects. This makes filter based unsuitable for
research into 2D-to-pseudo-3D video conversion. The ta@RPlications with complex and dynamic background changes
is complex and is exacerbated by the increasing resolutibn [2] [3]- They are computationally inexpensive when com-
of video sequences, stemming from continuing advancesAred o probabilistic methods, but are unable to achievel go

the video capture and transmission technology. As a resﬁfgm%nﬁ!or_‘ resul;s cfjor many n?ftural SCenes. he limitati
research into more efficient algorithms for real-time objec robabilistic methods are an effort to escape the limmstio

segmentation continues unabated of the filter-based approaches by learning the statistics of

. e ; ixels corresponding to background and using them to
In this paper, a common simplifying assumption that the'¢ P!X€
video is grabbed from a stationary camera is made. The t Etmgmsh between the background and the foregroundy The

is still difficult when the segmentation is to be done for matu are the preferred approach.for se_gmentation .Of sgquend:les wi
scenes where the background contains shadows and movifl plex background. Their main shortcoming is -that they
objects, and undergoes illumination changes. In this aonted'€ computationally complex and only able to achieve real-
the basic segmentation entities can be defined as follows: iMe Processing of comparatively small video formats (e.g.

« All objects that are present in the scene, during the who eigznlgo[ f]lxels) at reduced frame rates (e.g. 15 frames per
sequence or longer than a predefined period of time, arThe development of a parallelized probabilistic object-

Z(I)Ins;ﬂeredbpac;kground ijepti.h terred segmentation approach, which would allow for efficient hard
° fo ero JZCS appearing in the scene are referre t\?/are implementation and object detection in real-time for
as loreground. high-complexity video sequences (in terms of the frame size
+dculibrk@fau.edu, *oge@cse.fau.edu, fdsocek@fau.edu, @S Well as background changes), is the focus of this paper. In
“hari@cse.fau.eduborko@cse.fau.edu _ _ this respect it is an extension of previously published work
. This work Wﬁs suzporfted by the Center for Coastline Secuarity Center [5] [6] pertinent to marine surveillance. Here, the propzbse
Crypt [ tion Security. : . . . . )
°rAu{ﬁE,r‘;g;?§ Vgitﬁn,:mﬂdo;%;?]?ic S?,l,l\,”e?/,sty approach is described in more detail and examined in terms

Manuscript received xxxx xx, 2006; revised xxxx xx, 2006. of applicability to a broader range of surveillance applama
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With this in mind, it is tested on a diverse set of surveillancearly probabilistic approaches assumed normal distobuoif
related sequences compiled by dti al. [4]. the values of a single pixel. Thus, they tried to approxintlage

The proposed solution employs a feed-forward neural n€robability Density Function (PDF) of these values by alging
work to achieve background subtraction. To this end, a neéBaussian, whose parameters are recursively updated intorde
neural network structure is designed, representing a comfaillow gradual background changes within the video seqeenc
nation of Probabilistic Neural Network (PNN) [7] [8] and[14]. These techniques achieve slightly better segmemtati
a Winner Take All (WTA) neural network [9]. In addition, results than the Kalman filter.
rules for temporal adaptation of the weights of the network A natural extension to the single Gaussian-based appreache
are set based on a Bayesian formulation of the segmentatize the Mixture of Gaussians (MoG) models. These methods
problem. Such a network is able to serve both as an adaptise multiple evolving Gaussian distributions as a modetHer
model of the background in a video sequence and a Bayesiatues of the background pixels [15] [3] [16]. They showed
classifier of pixels as background or foreground. Neural neggood foreground object segmentation results for many out-
works posses intrinsic parallelism which can be exploited i door sequences. However, weaker results were reported [17]
suitable hardware implementation to achieve fast segrienta for video sequences containing non-periodical background
of foreground objects. changes. The improved performance of these methods can

Section Il provides insight into our motivation and a survelge attributed to the fact that they do not incorporate the
of related published work. Section Il holds the discussién assumption of the normal distribution of background pixel
the Bayesian inference framework used. Section 1V deseribealues. The shape of the PDFs they are trying to estimate can
the main aspects of the proposed approach. Section Vbis any shape that can be approximated with a predetermined
dedicated to the presentation and discussion of simulatinomber of Gaussian curves. In fact, with an infinite number of

results. Section VI contains the conclusions. Gaussian curves one can approximate any curve [18]. In that
case, the Gaussian curves represent what will be referred as
Il. MOTIVATION AND RELATED WORK a kernel in the terminology of the approach proposed below.

The segmentation approach described here is motivatedfsy reasons of computational complexity, the typical numbe
previous work in the domain of marine surveillance [5] [6]of Gaussians used for modelling is 3-5 [3]. This yields a&ath
It is intended as a solution to the problem of segmentation iimaccurate approximation of the PDFs and is the reason #ehin
natural-scene, complex-background sequences. The tdtinthe poor performance in complex sequences.
goal of the project is to achieve real-time segmentation of Recently (2003), Li et al. proposed a method for foreground
high-resolution QuadHDTYV images (frame size of 382160 object detection, which represents a combination of affiger
pixels). The segmentation module should eventually beémpland a probabilistic approach [4]. It can therefore be carsid
mented as a hardware component embedded in a QuadHDAWybrid in terms of the classification above. Initial segmen
camera; hence our interest in a hardware-friendly solution tation is filter-based and the model maintains a reference
The discussion of published works in this section is Idackground image as a model of the background. The authors
calized to probabilistic background-subtraction apphescto propose a novel approach to cope with the inability of the
foreground segmentation, with the exception of three mapdilter-based approaches to differentiate between the memtsn
concerning the application of neural networks to computer \of the foreground objects and background objects in complex
sion problems [10] [11] [12]. The motive for the former is thescenes. They model the PDFs of the pixel values detected
comparison of the proposed approach with other probaibilisby the initial segmentation. Thus, they are able to disiisigu
methods used to address the same problem. The latter lagwveen the errors in the initial segmentation and the true
included to point out the differences between the previofgreground pixels. The PDFs are updated in time and a Bayes’
relevant applications of neural networks and the approawiie based decision framework is formulated based on the
proposed. assumption that the pixel values observed more often at a
The Kalman filter approach to video object segmentatigingle pixel are more likely to be due to background object
[13] can be considered one of the first probabilistic apgneac movement. The applicability of the stated assumption to the
applied. It is an optimal solution to Bayesian estimatiorewh data that has been filtered through the initial segmentasion
the changes in the background are modeled by a dynamitclear. Nevertheless, the approach is able to achieve good
linear process with normal distribution of errors in the meaegmentation results for sequences containing high-émsgu
surement of the pixel values used to determine the stateabfanges in the pixels pertinent to background.
the system. In the work referenced, the state of the systenPNNs have not, to the best of our knowledge, been applied
has been defined as the vector of the change in gray valtesichieve motion-based object segmentation. They have bee
of the pixel and its first derivative. The linearity assuropti used to enhance the performance of certain specific object-
proved to be too restrictive to enable efficient segmentatio segmentation methods as reported in [11]. The PNN was used
the case of complex background scenes with high-frequertoyenhance the segmentation results of a color-basedf@assi
changes. Nevertheless, extended Kalman filter remains tieed to detect humans in specific scenes. The approach used a
only probabilistic approach that considers the error in theodel foreground objects, rather than background. However
measurements explicitly. supervising classifier was used to generate the traininfpset
While the Kalman filter approach makes an assumpti@amPNN and to periodically retrain it, differing from the fyll
about the normal (Gaussian) distribution of the noise, rothensupervised approach proposed here.



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. XX, XXXXX 207 4

An interesting application of PNNs in the domain of comframes) of a sample sequence. Plot 1(b) corresponds to b pixe
puter vision is reported in [10]. The PNN was used foof the water-surface in the frame shown in 1(a), while 1(@ is
cloud classification and tracking in satellite imagery. N  pixel pertinent to section of fig3 on the far right of the frame
was again a supervised classifier, and the approach did noin the proposed algorithm, the background model serves as
incorporate background modeling. the exclusive repository of the statistical informationragted

Both applications of neural networks to computer visioform the observed parts of pixel processes. To classifylgixe
problems, discussed above, are characterized by the use atrategy that minimizes the expected risk of our decision i
certain problem specific classifiers to supervise the neumhployed. Such strategies are known as Bayesian [19].
network. In addition, the training of the network is not
incre_mental gnq both approaches require the network to ge Bayes Classification Strategy
retrained periodically. . .

More recently (2006), Pajares [12] proposed a Hopfield The segme.nf[atmn problem_ls formulated tp enable the use
Neural Network (HNN) based algorithm for change detectioﬁ.f Bayes decision rqle to aCh"?"e segmentation. For a qerta|
As it is the case with the two preceding algorithms, th%rame t, we are trying to estl_mate the dgpende_:nt variable
algorithm does not employ background modeling to achieve! € {f,b}). The event of pixel at Iocatlom_ being part
segmentation segmentation. The approach could potg/ntiaﬂ the foreground corresponds © =/ wh||e 1 — b
be used as a part of a filter-based approach instead of mBEEn the pixel is .pertment_to backgrqun@l IS a funct|o_n
traditional frame difference calculation methods. Thisudo © the random variablé’ tqkmg values in the space of p!xel
however, severely increase the computational requiresnert?ature values. Note th&, is itself a random variable. Using

which represent a major advantage of filter-based appreacf?e Parzen estimator we can co_nstruct t_he estimat_e O.f th_e PDF
pi(V') of V.. Although no direct information of the distribution

BACKGROUND M ODEL other knowledge about the conditional probability digitibn
1(©;]V) of values of theta occurring when a certain value

The goal of the probabilistic segmentation algorithm pr%f V has been observed. Then, a Bayesian decision rule that

sented is to be able to classify the pixels in a frame of th? o . . i
. allows for the classification of pixels is formed as follows:
sequence as foreground or background, based on statistica

learned from the already observed frames of the video se- o — o ap(flo)p(v) > crpi(blv)pi(v); @)
quence. Different pixel features, such as intensity or RGB PTU b, ap(flo)p(v) < eppi(blo)pi(v).

components, can be used as basis for segmentation. The vaIuIene costs are application-dependent and determined sub-

of these features changes with each new frame of the Sequeﬁlﬁ?&ively. In experiments presented in this paper they are
If the pixel feature used for segmentation is intensity, drel considered to be the same (i€ = cy). This means that

pumerical intensity value of a_pixel at framef the SEQUENCE o misclassification of a pixel is considered equally bad if
is for examplel52, than the pixel feature value for that plxelit is labelled as foreground or as background. Thus, only

at framet correspond_s to its intensi;y valué5s@). In fact, _knowledge of the PDF p(V)) and the prior conditional
the video sequence itself can be viewed as a set of pixghyapijities of background and foreground occurring &epi
feature values varying over time. Stauffer al. [3] refer ©0 i’ needed to classify the pixel. However, the PREV) and
these changing pixel feature values as "pixel processesteM j;¢ shape is unknown, as is the case with the prior probiasilit
formally: if | = (x,y) is the location of a single pixel within oi(flv) and pi(blv), too. To classify the pixels they have
the frames of the video sequence, then a pixel process df pige e ‘estimated. This must be done efficiently if one hopes

l'is a set of all feature values of the pixel for all the frameg, ,cpieve real-time performance and segmentation of large
in the sequence: frames

PP =v:t€0,..,T Q)

where PP, is the pixel process at pixé) T is the number of B- Background Model
frames in the sequence, andis the feature value of the pixel At each given framet] of the sequence, the background
[ at framet. model stores the values of estimated probabilitieg W),
The observed features of pixels can be scalar in nature sughf|v) andp;(b|v)) for each pixel {) of the frame. The prior
as intensity or vectors (e.g. RGB values). Also, the featurprobabilities p;(f|v) and p;(b|v), for a specific valuev are
used for classification can be some higher-level features ecalar values and can be stored efficiently. The values of the
tracted for locationl. All that is required is that in a certain PDF p(V') should, in general, be known for any pixel value
frame ¢ the algorithm is able to decide whether the pixel aEhis makes storing of the estimated PDF a significant problem
arbitrary location! is pertinent to background or foreground, If a certain shape is assumed for the PDF, it can be
given the values! and part of the procesBP, up to current efficiently represented by the parameters of the proposed
framet.. In the subsequent discussion, whatever the naturedi$tribution [14] [3]. When this is not the case, theivea
the features actually used for classification, their valmed approach is to store the complete histogram of the PDF.
certain pixel will be simply be referred to as pixel value. Assuming that the feature used for classification is the RGB
Fig. 1 shows a plot of two sample pixel processes containinglue of the pixels, coded as 24 bits, this would result in a
some 300 pixel values, corresponding to 10 seconds (3&@ucture containin@56* (=~ 16.8 million) entries per pixel.
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Fig. 1. Sample pixel process plots.

However, as Let al. [4] show, it may not be necessary to storesmall part of the value space and are therefore similar. A
the whole histogram. They make a case for the assumpti@presentation based on a relatively small number of Ganissi
that the features that are part of the background tend dan be achieved if each Gaussian is used to represent a
be located in the small subset of the histogram, since thertion of observed patterns which are similar according to
processes occurring in the background tend to be repetititiee predefined threshold [8]. The procedure is similar to the
Plots in Fig. 1 illustrate this effect, since the RGB valuekinning used by Lkt al, but the resultant PDF representation
concentrate in small parts of the entire space of featungegal retains the notion of how close a value that is assigned to a
They were able to achieve adequate segmentation resultsfarticular Gaussian is to its center. This is not the cash wit
complex-background sequences by storing the statistic8o the binning, since all the values within a bin are assigned th
values (they coveredl 77ppm of the histogram) [17]. For other same value of PDF. Fig. 2 shows the plot of a Parzen estimator
features that spanned an even larger spacet &l. performed for three stored points with values in two-dimensional plan
binning of the features, considering all values to be theesarfe.qg. if only R and G values for a pixel are considered). The
if they differed by less than 3 in each dimension. horizontal planes in Fig. 2 represent the threshdéldvalues

In previously published work [6], color-based segmentaticused to decide which feature values are covered by a single
was employed. RGB values were used as features for pixghussian. All features within the circle defined by the cross
classification. Each channel was coded with 8 bits. Herggction of the Parzen estimate and the threshold plane are
we turn to intensity of the pixel as a low-level feature, taleemed close enough to the center of the peak to be within the
perform base-line evaluation of the approach. The intgrisit cluster pertinent to the Gaussian. The selection of smogthi
calculated as an average of the RGB values and coded witpa&8ameter value and the threshold controls the size of thkeci
bits. Instead of representing the PDF in the form of histograand the cluster. Larger values of lead to less pronounced
and applying the binning procedure, the PDF is estimatpeaks in the estimation, i.e. make the estimation "smobther
using Parzen estimators [18]. A Parzen estimator of a PBer a fixed smoothing parameter value, lower values for the
based on a set of measurements has the following analytittalesholdd will lead to larger coverage of the space of feature
form: values by the estimate.

IV. BACKGROUND MODELING NEURAL NETWORK (BNN)

T,
p(v) = %LZGXP[— Gt gv vt)] (3) In 1990, Specht [7] introduced a neural network archi-
(2m)n/20m T, — 20 ; -
= tecture to be used as a Bayesian classifier, based on the

where n is the dimension of the feature vectdf, is the Parzen estimation of the PDFs involved, and a Bayes decision
number of patterns used to estimate the PDF (observed pixde given by (2). He dubbed these networks Probabilistic
values),v; are the pixel values observed up to the fraile Neural Networks (PNNs). This architecture is a natural way
o is a smoothing parameter. to implement the classifier described in Section Ill. The

The Parzen estimator defined by (3) is a sum of multivariabackground segmentation approach proposed here relies on
Gaussian distributions centered at the observed pixeksaluan adapted PNN component to both classify the pixels and
As the number of observed values approaches infinity, tte store the model of the background within its weights. To
Parzen estimator converges to its underlying parent denséchieve the functionality needed by a probabilistic vidbjeot
provided that it is smooth and continuous. The smoothirgegmentation algorithm, the adapted PNN component has been
parameter controls the width of the Gaussians and its impastended and combined with a Winner-Take-All(WTA) neural
on the representation is treated in more detail below. Tihetwork. This resulted in a fairly complex solution with sem
scaling factor preceding the sum in (3) has no impact whemique properties. Namely, the proposed solution is a truly
Bayes decision rule (2) is used, and can be discarded. Usingrsupervised classifier, requiring no training set and it is
Parzen estimator-based approach it would be enough to stoapable of on-line learning. To the best of our knowledgs, th
all the values of a certain pixel observed in the known pag the first PNN-based framework to achieve these properties
of the sequence. This would still be inefficient, especiallgespite the use of PNN classifiers in myriad application
since the values of the background pixels concentrate indamains [10] [20][21] [22] [23]. The proposed neural-netko
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Fig. 2. Plots of Parzen estimators for different values of "sthing parameter”.

is referred to as Background Modeling Neural Network (BNNJhe output of the pattern neurons is a nonlinear function of
since it is suitable to serve both as a statistical model BEiclidean distance between the input of the network and the
the background at each pixel position in the video sequenatered pattern for that specific neuron. The only parameter
and highly parallelized background subtraction algoritia of this subnet is the smoothing paramete) Of the Parzen
single BNN is used to model the pixel process and classi@stimator, discussed previously. The output of a singleepat
the pixel at a single pixel locatioh neuron corresponds to the value of a single Gaussian of the

The basic idea that forms the basis of all probabilistic bacRDF estimation for the observed pixel value. Fig. 4 shows
ground modeling and video object segmentation approactikee structure of a pattern neuron of classification subniee. T
discussed in Section Il and the one presented here, is & direc
consequence of the definition of the background stated in
the introductionfeature values corresponding to background
objects will occur more often than those pertinent to the
foreground.In addition to this assumption, these methods share
a set of common tasks that need to be performed to learn,
update and store the background model that enables efficient
segmentation [3] [4]. These tasks, which have been used as
guidelines in the design of BNN, are:

1) Storing the values of the pixel features and learning

the probability with which each value corresponds to

background / foreground.
2) Determining the state in which new feature values J/ e-(W-V)T(W-V’Izd1
should be introduced into the model (i.e. when the t
statistics already learned are insufficient to make a +
decision).

3) Determining which stored feature value should be reig. 4. pattern neuron of PNN.
placed with the new value.

The two latter requirements are consequences of the factput of the summation units of the classification subnet
that real systems are limited in terms of the number of featus the sum of their inputs. The subnet has two summation
values that can be stored to achieve efficient performamce.neurons, each of them connected to all pattern neurons. The
terms of the neural network implementation proposed hése tloutput values of the summation neurons correspond to linitia
translates into the number of patterns stored, i.e. the BumiParzen estimates of joint probabilitipg(b, v) andp f, v) for
of neurons used per pixel. the pixel value observed). These estimates are input to the

The structure of BNN, shown in Fig. 3, has three distingést (output) layer, containing a single neuron. The finapat
subnets, corresponding to each of the tasks enumerated:abe¥ the network is a binary value indicating whether the pixel
classification activation and replacement The classification corresponds to foreground (output high) or backgroundpfatut
subnet is the adapted PNN discussed above. It is a centtal paw), i.e. the result of the comparison in (2).
of BNN shown in Fig. 3. The classification subnet contains
four layers of neurons annotated at the far right of the Fig. 3 L
Input neurons of this network simply map the inputs of th@- Classification Subnet
network, which are the values of the features for a specificl) Topology and LearningThe topology of the classifica-
pixel. Each input neuron is connected to all pattern neuror®n subnet is that of a PNN, as is the way in which the patterns
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Input units

Pattern units

Summation units

Output units

Activation Classification Replacement
Subnet Subnet Subnet

Fig. 3. Structure of Background Modeling Neural Network.

learnt are stored in the network. We discuss these briefly ath@ foreground summation neuron at times is the learning
refer the reader to [7] [8] for a more in depth discussiomate, N, is the number of the pattern neurons of BNJ,

In an PNN the patterns are stored in the weights connectiisga clipping function defined by (6) antif A indicates the
the input neurons and the pattern neurons. Originally, easburon with the maximum response (activation potential) at
pattern neuron corresponded to a single training pattert, gramet, according to (7).

the weights of the connections between the input neurons and { L 21

the pattern neuron were set to the values of the elements of fe(x) = v z<1 (6)

the feature vector. This is inefficient and various clusigri

methods have been employed to reduce the number of patterns B { 1, for neuron with maximum response;

0, otherwise.

needed. The clustering method used in BNN is as proposed b)M ()
Specht in [8]. It requires no external procedure is to deiteem . ]
whether a training pattern corresponds to a certain cluter ~ Equations (4) and (5) express the notion that whenever
pattern is simply fed to the network and if the output value &0 instance pertinent to a pattern neuron is encountered, th
a pattern neuron exceeds a predefined threshold, the patf§@pPability that that pattern neuron is activated by a femtu
is within the cluster covered by the pattern neuron. If ngflueé belonging to the background is increased. Naturilly,
neuron achieves significant activation, the network ismigg that is the case, the probability that the pattern neuron is
as inactive and a pattern neuron is assigned to the pattépcited by a pattern belonging to foreground is decreased.
It becomes a new cluster center. This procedure allows th@nversely, the more seldom a feature value corresponding
network to adapt to the time-varying environment. In BNNO a pattern neuron is encountered, the more likely it |s_that
all the values in the pixel processes are considered tginit€ Patterns represented by it belong to foreground objects
patterns and the network undergoes permanent adaptagonSfnce the PDF value of a single pattern is increased, while
the training of the network is done on-line. all the others are decreased, the decay rate is set to a value
In the classification subnet of BNN, the weights between tifghaller than the increase rate by a factor equal to the number
pattern and summation neurons are used to store the the pRbptored patterns (pattern neurons). By adjusting theniegr
probabilities inferred for the pattern neuron valpg(f|v) and ate ), it is possible to control the speed of the learning
pi(b|v)). Since these values are unknown, rules were form80CesS. _
which allow the BNN to estimate them based on the observed?) Convergence of the Learning Procedset T, and T,,,
parts of a pixel process and the frequency of specific featfignote the number .of frgmes in the sequence in which certain
values observed. The weights of these connections areathddgature value of a pixel is observed and the number of frames
with each new value of a pixel at a certain position receivdd Which it is not observed, respectively. Naturally, therall
(i.e. with each frame), according to the following recuesivhumber of frames in the sequenteis:

equations: T="T,,+T, 8)
WEF = f.((1 - Ni) Wh + MA'B) 4 If a simplifying assumption is made, that the feature value
pn is not observed for the first,,, frames of the sequence and
Wz_t;rl =1-wiH (5) then observed fof, frames, the weights for the pattern neuron

corresponding to the feature value are determined by emsati
whereW}, is the value of the weight between tixh pattern (4)-(7):
neuron and the background summation neuron at ti,rﬂ@ff 16}
N,

. T _(1_
is the value of the weight between th¢h pattern neuron and Wi = (1 on

)Tme - Wi + T, )
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Wf; =1-W} (10) with maximum activation and will be equal to the maximum
- . activation. In Fig. 3 these outputs are indicated with , Zp.
0 )
where W, corresponds to the initial weight set when the o <cture of a processing neuron of 1LF-MAXNET is

pattern is first observed. The initial weight has low Valughown in Fig. 5. A single neuron in the second layer of the
(W9 < 1), to indicate that it is not likely that the value

observed for the first time corresponds to a background .pixel

X, X

In addition, the values of the learning parameter are beiwee ]
0 and 1. Observe that: 4{ %{

Xy X X
12 %ﬂg 9
Therefore: F F F F
Wi, ~ T, (12) T_ = T_ J:

B < Npn, (11)

Thus, if a pixel value is encountered4nconsecutive frames
it will be classified as background with maximum support. On
the other hand the confidence that a feature value belongs to
the background will decay from the maximum(to— me )Lne
if it is not encountered foff;,, frames.

Y.

1
B. Activation and Replacement Subnets

The adaptation of the classification subnet requires the BNilg- 5. Processing neuron of a 1LF-MAXNET structure.
to be able to detect the state of low activation of all the
neurons in the net. This indicates that the feature value f&
to the network is not within the clusters stored and that tt@ _ :
feature value should be stored in the network weights as a n&{he following equations:
cluster center. The activation part of BNN is concerned with P
the detection of this state. In addition, when the new vatue i NA=F()_ z -0 (15)
to be stored, the network must be able to decide which pattern i=1
neuron’s weights are to be replaced with new ones. This is th&ere F' is given by (14) and) is the activation threshold,
function of the replacement subnet. which is provided to the network as a parameter. Finally, the

The activation and replacement subnets are WTA neufgplacement subnetin Fig. 3 can be viewed as a separatd neura
networks. A WTA network is a parallel and fast way tdet with the unit input. However, it is inextricably relatéal
determine minimum or the maximum of a set of values. Ihe classification subnet since each of the replacemengesubn
particular, these subnets are extensions of one-layefdieedfirst-layer neurons is connected with the input via synapses
ward MAXNET (1LF-MAXNET) proposed in [9]. that have the same weight as the two output synapses be-

To detect the state of low activation in BNN the activatiofiveen the pattern and summation neurons of the classificatio
subnet determines which of the neurons of the network hgigbnet. Each pattern neuron has a corresponding neuron in
maximum activation (output) and whether that value exceetl¥® replacement net. The function of the replacement net is
a threshold provided as a parameter to the algorithm. Ifésdoto determine the pattern neuron that minimizes the criterio
not, the BNN is considered inactive and new cluster centéf cluster center replacement, expressed by the following
learning process is initiated. If the network is inactivee t equation:

ativation subnet is concerned with detecting whether tR&lB
active or not and its function can be expressed in the form

pixel_ is considered to belong to a foregroynd object, since replacement _criterion = Witf W — Wl_tf| (16)
this is a value that has not been present in the background =~ ] ) )
model. The criterion is a mathematical expression of the idea that

The first layer of the activation network has the structura ofthoSe patterns that are least likely to belong to the backgfo

1LF-MAXNET network and a single neuron is used to indicat@nd those that provide least confidence to make the decision
whether the network is active. The output of the neurons 8fuld be the first to be eliminated from the model.

the first layer of the network can be expressed in the form of 1 N€ neurons of the first layer calculate the negated value
the following equation (see Fig. 5): of the replacement criterion for the pattern neuron they cor

respond to. This inversion of the sign is done to enable the

P o use of 1ILF-MAXNET component to detect the lowest value
Yj=X;x H{F(XJ' = Xili # )} (13)  of the criterion. The second layer of the network is a 1LF-
=1 MAXNET that yields non-zero output corresponding to the
where: i pattern neuron to be replaced.
F(z) = { L, it 220 (14)
0, if z<0; C. Hardware implementation considerations

As the (13) and (14) indicate, the output of the first layer of Suitability of the proposed solution for hardware implemen
the activation subnet will differ from O only for the neurongation is a primary concern in our research.



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. XX, XXXXX 207 9

TABLE |

Since each neuron within a layer of the BNN is able of
LEARNING RATE USED IN EXPERIMENTS

performing its function in parallel, the proposed appro#&ch

parallelized on a sub-pixel level. More precisely, it is gk CAM 1| sw ET WS MR
on the level of a single pattern stored for a pixel, since the 3 | 005 |[ 0.003] 0.01| 001 || 0.003
pattern neurons of the classification subnet are able tomerf
their calculations in parallel.

The presence of the WTA networks eliminates the need for
sorting operations employed both in the hybrid approachiof L
et al. and MoG. In addition, there is no need to perform an . . : L
operations on the whole frame, such as histogram extracti puld be considered as a possibility bOth in applications a
for adaptive thresholding performed in the approach oéLi as ?] \éenue to further explore the quality of the proposed
al. [24], which limit the extent to which the approach can pgrethod. ) . ) .
parallelized and make the speed of segmentation dependenth€ neural networks used in the experiments are fairly sim-
on the size of the frame. No publications have been identifif- The simulation application implements BNNs contagnin
dealing with parallel or hardware implementations of Mo@ a 0 p_attern neurons in _thelr classification subnets. W|th_the
the approach of Lét al. However, Liet al. report [4] that their 2dditional two summation and one output neuron required
approach can achieve processing speed of 15 fps for180 I the class]f|cat!on subnet (see. Fig. 3), thg total number
pixel large frames and 3 fps for 32@40 pixel large frames Of neurons in this part of BNN is 33. The input neurons
when run on a 1.7 GHz Pentium CPU. For MoG containing @ the classification shown in Fig. 3 just map the input
Gaussians per pixel, processing rate of 11 to 13 fps (framee si© the output and need not be implemented as such. The

160x120 pixels), on an SGI 02 with an R10000 processdﬂ“mber of neurons required in the activation and replacémen
has been reportéd 13]. subnets is determined by the number of pattern neurons of the

The speed of the segmentation of the proposed approa%Iﬁlssification subnet. These two subnets attribute fortiadi
ﬁ'neurons in the activation subnet and 60 processing umits i

in a parallel hardware-implementation, does not depend g )
the size of the frame. The delay of the network (segmentatifif replacement subnet. Thus, the total number of neurons in
time) corresponds to the time needed by the signal to prapagd Singlé BNN used is 124. A single BNN is used to model
through the network and time required to update it. In R€ Packground at a single pixel.

typical FPGA implementation this can be done in less than 20 The learning rate {) varied from sequence to sequence
clock cycles, which corresponds to a 2 ms delay through tRetween three different settings (0.05, 0.01 and 0.003) as
network, for a FPGA core running at 10 MHz clock rate. Thu$nown in Table I. The learning rates have been set based on
the networks themselves are capable of achieving a thrmgh}ye observed speed o_f motion of the objects in the for_eground
of some 500 fps, which is more than sufficient for real-tim@nd rate of changes in the background. Larger learning rates

LB SC AP BR SS
15} 0.01 0.01 || 0.03 || 0.003 || 0.05

BNN is clearly suitable to serve as basis for efficierf@ckground faster but lead to faster absorption of statjona
hardware implementation. foreground objects by the background model. Lower learning

rates make the network slower to adapt to sudden changes in
the background (e.g. due to switching of lights) but will raak
V. EXPERIMENTS AND RESULTS the model less prone to errors due to absorption of statjonar

To evaluate the performance of the neural network a sequé@reground objects.
tial PC based implementation has been developed. Preyjousl The smoothing parameter) for the classification subnet
experiments have been conducted on a set of sequeri¢®@d was set to 7 (a value approximately twice the size
pertinent to marine surveillance [6]. Here, a set of divesse standard deviation of the intensity values for a single Ipixe
guences containing complex background conditions, peavidThe activation thresholddf of the activation subnet was set
by Li et al.[4] and publicly available alittp://perception.i2r.a- to 0.5, meaning that the values further thean.18¢ form the
star.edu.sgwas used. The results of the segmentation wepattern neuron weights were deemed outside the scope of the
evaluated both qualitatively and quantitatively, usingeaaf cluster covered by that particular neuron.
ground truth frames provided by the same authors for theThe results for MoG were obtained for a mixture containing
different sequences. To evaluate the performance of the &9 Gaussians, to ensure a fair comparison. While the authors
proach, a well-known probabilistic modelling approach MoGuggest the use of 3-5 Gaussians in the mixture to achieve
[3] and the approach of Lét al. [4], have been implementedreal-time performance [3], they speculated that a largerber
and the segmentation results of different algorithms caoegha of Gaussians would lead to better segmentation results. The
Same pixel feature, namely its intensity value was usedIfor aitial value of the deviation for MoG was set to the value
approaches. Since all three are general in terms of featuofshe smoothing parameter of BNN (7) while the threshold
used, the intent is to compare base-line modelling and claslecting the number cases to be covered by Gaussians used
sification ability rather than explore the problem of sdlegt in the decision process was set to 0.5. A Gaussian covered the
the best features in order to achieve best segmentatiohseswalues within 2.5 standard deviations of the mean, as steggjes
Note however, that use of different features can affect tlhre [3]. The learning rates for the MoG were set to the same
segmentation quality and that employing different featurealues as for the BNN.
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In the experiments with the approach ofdtial. the number presence of secular surfaces, inducing complex shadow and
of pixel intensity values and pixel intensity co-occurrencglare effects. In addition, these spaces can contain large
values was adopted from [17]. No binning of the intensitynoving objects such as escalators and elevators.
values was performed, while bins of width 4 were used for co- | .. . .

Initial results presented in [6] are concerned with outdoor

occurrence features, In addition, to ensure a fair compayis sequences with background containing water surfaces ds wel
the probabilistic background model has been updated baSed 9 g

o : .~~~ as$ objects undergoing motion due to wind. To evaluate the
on the initial segmentation results, before the applicatb . .
. . . segmentation results for the outdoor environments further
morphological processing, as it was done for the other t

o] : .
. . ¥Sur sequences were used. The first sequence is of a campus
approaches. The learning rates used for the experiments wer

those suggested in [4]. While It al. suggest that the sameenwronment (CAM), showing vehicles and pedestrians nmgvin

. . ong a road in front of a thicket of fig3 moving rapidly in
learning rates should be used for their approach and MoG [t e v?/ind. Second is that of a sidewalkg(SW) Witﬁ pezes¥rians

they do not consider the interplay of two different learnin . . ; .
rates used on the two levels of their algorithm. Thus, th?rsmvmg along. The complexity of the background in the third

i . . sequence (FT) is due to a water fountain. The fourth (WS) is
suggestion was not followed in the experiments performe .
a sequence of a person at walking at a waterfront, and the
here. L .

. complexity is due to the water-surface in the background.

Morphological operations such as morphological closi . .
. . he proposed algorithm was able to cope with complex
and opening as well as connected components algorithm an S .
ackground variation in all these sequences. Represantati

the elimination of small objects have been used to enharce : . : .
segmentation results, as it was done in [4]. All the segren rames and corresponding segmentation results are given in
) : igs. 6,7,8 and 9, for the sequences CAM, SW, FT and

tion results, along with the binaries used for segmentadiuh . . -
. . ! S, respectively. The figures show the original frame, the
MATLAB scripts to perform the morphological processing an . ; .
. L X Segmentation result obtained using BNN, ground truth frame
extract the statistics used for quantitative comparisan lwa . .
segmentation result of MoG and segmentation result for the

found athtt p: // m ab. f au. edu. .
A possible alternative to morphological processing cowd mOdel of the background proposed by & al, from left to

the use of a still image segmentation algorithm, such as tﬁ' ht. The ground truths are manually segmented frames. All

oroposed by Blekast al. [25] to enhance the segmentatiog € images referred to in this subsection have the same forma

results. The resulting algorithm would have the benefit of Two sequences are used to test the performance for small
exploiting spatial information. To improve the performanc indoor environments. The first was captured in a meeting room
still image segmentation could be localized to regionsaalye (MR) with the curtain moving in the background. The second
detected as foreground. (LB) was taken in the lobby of the office building, with the
lights switching on and off. Representative frames for the t

A. Qualitative Results sequences are shown in Figs. 10 and 11.

Qualitative evaluation of the segmentation results is per-Four sequences pertinent to large indoor environments were
formed by visual inspection. In this section a number dfsed. They were taken in a shopping center (SC), an airport
representative frames from the test sequences is pressviged (AP), a buffet restaurant (BR) [2] and a subway station
discuss the nature and the causes of complexity of backdro®S). They illustrate the capability of the approach to cope
changes. The discussion is limited and the reader is referdith shadow effects. The subway station sequence contains
to [4] for a more in-depth treatment. moving escalators in the background. Segmentation refaults

Ten testing sequences were obtained in several differéfgse sequences are illustrated in Figs. 12,13,14 and ¥5. Th
environments. Rather than following the classificatiorgieri algorithm was able to learn the behavior of the escalators in
nally used in [4], they are grouped here based on the sourde@ SS sequence and absorb them into the background. The
of complexity in background variation, pertinent to eachlgorithm does not incorporate shadow cancellation and has

environment. Three groups of sequences (environments) Hregome cases segmented the shadows as foreground objects
identified: as shown in 14(b). A possible solution to this problem lies

in the use of features able to cope with these effects, as are
2) Small indoor environments. features in gradient domain proposed in [26]. In addition, a
more sophisticated approach, such as that proposed bgt Gu

3) Large (public) indoor environments. - X
L . al. [27], could be applied to the segmented regions, to remove
The sources of complexity in the sequences obtained If ) )
yadows at the higher levels of processing.

outdoor environments are usually due to objects moved B
wind (e.g. fig3 or waves) and illumination changes due to An additional weakness of the the proposed algorithm
changes in cloud cover. For small indoor environments, sushthe tendency to incorporate foreground objects, thgh sto

as offices, the source of complexity related mostly to olmoving for extended periods of time, into the background.

jects such as curtains or fans moving in the background Dhis is a weakness of all background modeling segmentation
screens flickering. The illumination changes are mostlytdue approaches, stemming from the basic definitions of back-
switching lights on and off. Large public indoor environnteen ground and foreground stated above. A possible solution to
(e.g. subway stations, airport halls, shopping centers) etthis problem is the use of top-down information from higher-

are characterized by lighting distributed from the ceilemyd level object tracking and recognition algorithms.

1) Outdoor environments.
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(b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

[
o
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(b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 7. Segmentation of the buffet sidewalk sequence (SW).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 8. Segmentation of the water fountain sequence (FT).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 9. Segmentation of the water surface sequence (WS).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 10. Segmentation of the meeting-room sequence (MR).
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KK

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 11. Segmentation of the office-building lobby sequend®)(

B
4 !

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 12. Segmentation of the shopping center sequence (SC).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 13. Segmentation of the airport sequence (AP).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 14. Segmentation of the buffet restaurant sequence. (BR)

| %]

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 15. Segmentation of the subway-station sequence (SS).
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TABLE I
SIMILARITY MEASURE VALUES FOR EACH TEST SEQUENCE

CAM SwW FT WS MR
BNN 0.5256 || 0.6216 || 0.4636 || 0.7540 | 0.7368

| MoG || 0.0757 [ 0.5861 | 0.6854 [ 0.7948 ]| 0.7580 |
[ Lietal || 0.1596 ]| 0.1032 | 0.0999 [| 0.0667 || 0.1841 |

LB SC AP BR SS
BNN 0.6276 || 0.5696 || 0.3923 || 0.4779 || 0.4928

| MoG || 0.6519] 0.5363 | 0.3335] 0.3838 ]| 0.1388 |
[ Lietal [[ 0.1554 [] 05209 [| 0.1135 [| 0.3079 || 0.1294 |

B. Quantitative Evaluation
For each of the ten test sequences we calculate a mea

in [17]. If D is a detected(segmented) region ardhe cor-

responding ground truth, then the similarity measure betwe

these two regions is defined as:

_ DnaG
T DUG

17)

M

of the segmentation accuracy following the methodologydus

13

improvement in segmentation ability when compared to a
well known pure probabilistic approach MoG. For several

sequences MoG featuring 30 Gaussians achieved bettetsresul
(FT, WS, MR and LB). This result indicates that the proposed
approach could benefit from introduction of adaptive kernel
width and center. Both MoG and the proposed approach
performed significantly better than the hybrid model-based
approach of Liet al, when the pixel intensity values are used

as the basis for segmentation.

The approach is independent of the features used to achieve
segmentation and use of features other than intensity yalue
should be explored to enhance the segmentation resules; esp
cially in terms of shadow suppression. The approach would
also benefit from the introduction of mechanisms that would
allow it to exploit spatial information, typically used irtils
ge segmentation. Currently, the extension of the approa
fo use the feedback from higher processing modules of object
tracking to enhance the segmentation, is being examineaxh Su
top-down control could be used to cope with the problem of
foreground objects being absorbed by the background.
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