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Neural Network Approach to Background Modeling
for Video Object Segmentation

DubravkoĆulibrk+, Oge Marques∗, Daniel Socek†, Hari Kalva♯, Borko Furht♭

Abstract— The paper presents a novel background modeling
and subtraction approach for video object segmentation. A
neural network architecture is proposed to form an unsupervised
Bayesian classifier for this application domain. The constructed
classifier efficiently handles the segmentation in natural-scene
sequences with complex background motion and changes in
illumination. The weights of the proposed neural network serve
as a model of the background and are temporally updated to
reflect the observed statistics of background. The segmentation
performance of the proposed neural network is qualitatively and
quantitatively examined and compared to two extant probabilistic
object segmentation algorithms, based on a previously published
test pool containing diverse surveillance-related sequences. The
proposed algorithm is parallelized on a sub-pixel level and
designed to enable efficient hardware implementation.

Index Terms— Object segmentation, Neural networks, Video
processing, Background subtraction, Automated surveillance.

I. I NTRODUCTION

T HE rapid increase in the amount of multimedia content
produced by our society is a powerful driving force

behind the significant scientific effort spent on developing
automatic methods to infer meaning of this content. A vital
part of this work is directed towards the analysis of video
sequences. Object segmentation represents a basic task in
video processing and the foundation of scene understanding,
various surveillance applications, as well as the emerging
research into 2D-to-pseudo-3D video conversion. The task
is complex and is exacerbated by the increasing resolution
of video sequences, stemming from continuing advances in
the video capture and transmission technology. As a result,
research into more efficient algorithms for real-time object
segmentation continues unabated.

In this paper, a common simplifying assumption that the
video is grabbed from a stationary camera is made. The task
is still difficult when the segmentation is to be done for natural
scenes where the background contains shadows and moving
objects, and undergoes illumination changes. In this context,
the basic segmentation entities can be defined as follows:

• All objects that are present in the scene, during the whole
sequence or longer than a predefined period of time, are
considered background objects.

• All other objects appearing in the scene are referred to
as foreground.
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The goal of the video object segmentation is to separate
pixels corresponding to foreground from those corresponding
to background.

If the state of the background is known for every frame
of the sequence and there are no changes in illumination, the
segmentation can be accomplished by a simple comparison
between the background image and a frame of the sequence.
This, however, is unrealistic for almost all applications.In the
absence of an exact model for the background, one has to be
estimated based on the information in the sequence and some
assumptions. The process of modeling the background and
determining the foreground by comparison with the frames of
the sequence is often referred to asbackground subtraction.

Two broad classes of background-subtraction methods can
be identified:

1) Filter based background subtraction.
2) Probabilistic background subtraction.
Filter based approaches were developed first and rely on

some sort of low-pass filtering of the frames of the sequence to
obtain a model of the background in the form of a background
image. Their main weakness is the inherent assumption of the
background changing more slowly than the foreground. High
frequency motion in the background such as that of moving
branches or waves often leads to misclassification of these
background objects. This makes filter based unsuitable for
applications with complex and dynamic background changes
[1] [2] [3]. They are computationally inexpensive when com-
pared to probabilistic methods, but are unable to achieve good
segmentation results for many natural scenes.

Probabilistic methods are an effort to escape the limitations
of the filter-based approaches by learning the statistics of
the pixels corresponding to background and using them to
distinguish between the background and the foreground. They
are the preferred approach for segmentation of sequences with
complex background. Their main shortcoming is that they
are computationally complex and only able to achieve real-
time processing of comparatively small video formats (e.g.
120×160 pixels) at reduced frame rates (e.g. 15 frames per
second) [4].

The development of a parallelized probabilistic object-
segmentation approach, which would allow for efficient hard-
ware implementation and object detection in real-time for
high-complexity video sequences (in terms of the frame size
as well as background changes), is the focus of this paper. In
this respect it is an extension of previously published work
[5] [6] pertinent to marine surveillance. Here, the proposed
approach is described in more detail and examined in terms
of applicability to a broader range of surveillance application.
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With this in mind, it is tested on a diverse set of surveillance
related sequences compiled by Liet al. [4].

The proposed solution employs a feed-forward neural net-
work to achieve background subtraction. To this end, a new
neural network structure is designed, representing a combi-
nation of Probabilistic Neural Network (PNN) [7] [8] and
a Winner Take All (WTA) neural network [9]. In addition,
rules for temporal adaptation of the weights of the network
are set based on a Bayesian formulation of the segmentation
problem. Such a network is able to serve both as an adaptive
model of the background in a video sequence and a Bayesian
classifier of pixels as background or foreground. Neural net-
works posses intrinsic parallelism which can be exploited in a
suitable hardware implementation to achieve fast segmentation
of foreground objects.

Section II provides insight into our motivation and a survey
of related published work. Section III holds the discussionof
the Bayesian inference framework used. Section IV describes
the main aspects of the proposed approach. Section V is
dedicated to the presentation and discussion of simulation
results. Section VI contains the conclusions.

II. M OTIVATION AND RELATED WORK

The segmentation approach described here is motivated by
previous work in the domain of marine surveillance [5] [6].
It is intended as a solution to the problem of segmentation in
natural-scene, complex-background sequences. The ultimate
goal of the project is to achieve real-time segmentation of
high-resolution QuadHDTV images (frame size of 3840×2160
pixels). The segmentation module should eventually be imple-
mented as a hardware component embedded in a QuadHDTV
camera; hence our interest in a hardware-friendly solution.

The discussion of published works in this section is lo-
calized to probabilistic background-subtraction approaches to
foreground segmentation, with the exception of three papers
concerning the application of neural networks to computer vi-
sion problems [10] [11] [12]. The motive for the former is the
comparison of the proposed approach with other probabilistic
methods used to address the same problem. The latter are
included to point out the differences between the previous
relevant applications of neural networks and the approach
proposed.

The Kalman filter approach to video object segmentation
[13] can be considered one of the first probabilistic approaches
applied. It is an optimal solution to Bayesian estimation when
the changes in the background are modeled by a dynamic
linear process with normal distribution of errors in the mea-
surement of the pixel values used to determine the state of
the system. In the work referenced, the state of the system
has been defined as the vector of the change in gray values
of the pixel and its first derivative. The linearity assumption
proved to be too restrictive to enable efficient segmentation in
the case of complex background scenes with high-frequency
changes. Nevertheless, extended Kalman filter remains the
only probabilistic approach that considers the error in the
measurements explicitly.

While the Kalman filter approach makes an assumption
about the normal (Gaussian) distribution of the noise, other

early probabilistic approaches assumed normal distribution of
the values of a single pixel. Thus, they tried to approximatethe
Probability Density Function (PDF) of these values by a single
Gaussian, whose parameters are recursively updated in order to
follow gradual background changes within the video sequence
[14]. These techniques achieve slightly better segmentation
results than the Kalman filter.

A natural extension to the single Gaussian-based approaches
are the Mixture of Gaussians (MoG) models. These methods
use multiple evolving Gaussian distributions as a model forthe
values of the background pixels [15] [3] [16]. They showed
good foreground object segmentation results for many out-
door sequences. However, weaker results were reported [17]
for video sequences containing non-periodical background
changes. The improved performance of these methods can
be attributed to the fact that they do not incorporate the
assumption of the normal distribution of background pixel
values. The shape of the PDFs they are trying to estimate can
be any shape that can be approximated with a predetermined
number of Gaussian curves. In fact, with an infinite number of
Gaussian curves one can approximate any curve [18]. In that
case, the Gaussian curves represent what will be referred as
a kernel in the terminology of the approach proposed below.
For reasons of computational complexity, the typical number
of Gaussians used for modelling is 3-5 [3]. This yields a rather
inaccurate approximation of the PDFs and is the reason behind
the poor performance in complex sequences.

Recently (2003), Li et al. proposed a method for foreground
object detection, which represents a combination of a filtering
and a probabilistic approach [4]. It can therefore be considered
a hybrid in terms of the classification above. Initial segmen-
tation is filter-based and the model maintains a reference
background image as a model of the background. The authors
propose a novel approach to cope with the inability of the
filter-based approaches to differentiate between the movements
of the foreground objects and background objects in complex
scenes. They model the PDFs of the pixel values detected
by the initial segmentation. Thus, they are able to distinguish
between the errors in the initial segmentation and the true
foreground pixels. The PDFs are updated in time and a Bayes’
rule based decision framework is formulated based on the
assumption that the pixel values observed more often at a
single pixel are more likely to be due to background object
movement. The applicability of the stated assumption to the
data that has been filtered through the initial segmentationis
unclear. Nevertheless, the approach is able to achieve good
segmentation results for sequences containing high-frequency
changes in the pixels pertinent to background.

PNNs have not, to the best of our knowledge, been applied
to achieve motion-based object segmentation. They have been
used to enhance the performance of certain specific object-
segmentation methods as reported in [11]. The PNN was used
to enhance the segmentation results of a color-based classifier
used to detect humans in specific scenes. The approach used a
model foreground objects, rather than background. However, a
supervising classifier was used to generate the training setfor
a PNN and to periodically retrain it, differing from the fully
unsupervised approach proposed here.
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An interesting application of PNNs in the domain of com-
puter vision is reported in [10]. The PNN was used for
cloud classification and tracking in satellite imagery. ThePNN
was again a supervised classifier, and the approach did not
incorporate background modeling.

Both applications of neural networks to computer vision
problems, discussed above, are characterized by the use of
certain problem specific classifiers to supervise the neural
network. In addition, the training of the network is not
incremental and both approaches require the network to be
retrained periodically.

More recently (2006), Pajares [12] proposed a Hopfield
Neural Network (HNN) based algorithm for change detection.
As it is the case with the two preceding algorithms, this
algorithm does not employ background modeling to achieve
segmentation segmentation. The approach could potentially
be used as a part of a filter-based approach instead of more
traditional frame difference calculation methods. This would,
however, severely increase the computational requirements,
which represent a major advantage of filter-based approaches.

III. PROBABILISTIC PIXEL CLASSIFICATION AND

BACKGROUND MODEL

The goal of the probabilistic segmentation algorithm pre-
sented is to be able to classify the pixels in a frame of the
sequence as foreground or background, based on statistics
learned from the already observed frames of the video se-
quence. Different pixel features, such as intensity or RGB
components, can be used as basis for segmentation. The value
of these features changes with each new frame of the sequence.
If the pixel feature used for segmentation is intensity, andthe
numerical intensity value of a pixel at framet of the sequence
is for example152, than the pixel feature value for that pixel
at frame t corresponds to its intensity value (152). In fact,
the video sequence itself can be viewed as a set of pixel
feature values varying over time. Staufferet al. [3] refer to
these changing pixel feature values as ”pixel processes”. More
formally: if l = (x, y) is the location of a single pixel within
the frames of the video sequence, then a pixel process of pixel
l is a set of all feature values of the pixel for all the frames
in the sequence:

PPl = vt
l : t ∈ 0, ..., T (1)

wherePPl is the pixel process at pixell, T is the number of
frames in the sequence, andvt

l is the feature value of the pixel
l at framet.

The observed features of pixels can be scalar in nature such
as intensity or vectors (e.g. RGB values). Also, the features
used for classification can be some higher-level features ex-
tracted for locationl. All that is required is that in a certain
frame t the algorithm is able to decide whether the pixel at
arbitrary locationl is pertinent to background or foreground,
given the valuesvt

l and part of the processPPl up to current
frametc. In the subsequent discussion, whatever the nature of
the features actually used for classification, their value for a
certain pixel will be simply be referred to as pixel value.

Fig. 1 shows a plot of two sample pixel processes containing
some 300 pixel values, corresponding to 10 seconds (300

frames) of a sample sequence. Plot 1(b) corresponds to a pixel
of the water-surface in the frame shown in 1(a), while 1(c) isa
pixel pertinent to section of fig3 on the far right of the frame.

In the proposed algorithm, the background model serves as
the exclusive repository of the statistical information extracted
form the observed parts of pixel processes. To classify pixels,
a strategy that minimizes the expected risk of our decision is
employed. Such strategies are known as Bayesian [19].

A. Bayes Classification Strategy

The segmentation problem is formulated to enable the use
of Bayes decision rule to achieve segmentation. For a certain
frame t, we are trying to estimate the dependent variable
(Θl ∈ {f, b}). The event of pixel at locationl being part
of the foreground corresponds toΘl = f , while Θl = b

when the pixel is pertinent to background.Θl is a function
of the random variableV taking values in the space of pixel
feature values. Note thatΘl is itself a random variable. Using
a Parzen estimator we can construct the estimate of the PDF
pl(V ) of V . Although no direct information of the distribution
of Θl is available, suppose that one is able to infer some
other knowledge about the conditional probability distribution
pl(Θl|V ) of values of theta occurring when a certain value
of V has been observed. Then, a Bayesian decision rule that
allows for the classification of pixels is formed as follows:

Θl =

{

f, cbpl(f |v)pl(v) > cfpl(b|v)pl(v);
b, cbpl(f |v)pl(v) ≤ cfpl(b|v)pl(v).

(2)

The costs are application-dependent and determined sub-
jectively. In experiments presented in this paper they are
considered to be the same (i.e.cf = cb). This means that
the misclassification of a pixel is considered equally bad if
it is labelled as foreground or as background. Thus, only
knowledge of the PDF (pl(V )) and the prior conditional
probabilities of background and foreground occurring at pixel
l is needed to classify the pixel. However, the PDFpl(V ) and
its shape is unknown, as is the case with the prior probabilities
pl(f |v) and pl(b|v), too. To classify the pixels they have
to be estimated. This must be done efficiently if one hopes
to achieve real-time performance and segmentation of large
frames.

B. Background Model

At each given frame (t) of the sequence, the background
model stores the values of estimated probabilities (pl(V ),
pl(f |v) andpl(b|v)) for each pixel (l) of the frame. The prior
probabilitiespl(f |v) and pl(b|v), for a specific valuev are
scalar values and can be stored efficiently. The values of the
PDFp(V ) should, in general, be known for any pixel valuev.
This makes storing of the estimated PDF a significant problem.

If a certain shape is assumed for the PDF, it can be
efficiently represented by the parameters of the proposed
distribution [14] [3]. When this is not the case, the naı̈ve
approach is to store the complete histogram of the PDF.
Assuming that the feature used for classification is the RGB
value of the pixels, coded as 24 bits, this would result in a
structure containing2563 (≈ 16.8 million) entries per pixel.
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(a) Sequence frame. (b) Water-surface pixel. (c) Tree pixel.

Fig. 1. Sample pixel process plots.

However, as Liet al. [4] show, it may not be necessary to store
the whole histogram. They make a case for the assumption
that the features that are part of the background tend to
be located in the small subset of the histogram, since the
processes occurring in the background tend to be repetitive.
Plots in Fig. 1 illustrate this effect, since the RGB values
concentrate in small parts of the entire space of feature values.
They were able to achieve adequate segmentation results for
complex-background sequences by storing the statistics for 80
values (they covered4.77ppm of the histogram) [17]. For other
features that spanned an even larger space, Liet al. performed
binning of the features, considering all values to be the same
if they differed by less than 3 in each dimension.

In previously published work [6], color-based segmentation
was employed. RGB values were used as features for pixel
classification. Each channel was coded with 8 bits. Here,
we turn to intensity of the pixel as a low-level feature, to
perform base-line evaluation of the approach. The intensity is
calculated as an average of the RGB values and coded with 8
bits. Instead of representing the PDF in the form of histogram
and applying the binning procedure, the PDF is estimated
using Parzen estimators [18]. A Parzen estimator of a PDF
based on a set of measurements has the following analytical
form:

p(v) =
1

(2π)n/2σn

1

To

To
∑

t=0

exp[−
(v − vt)

T (v − vt)

2σ2
] (3)

where n is the dimension of the feature vector,To is the
number of patterns used to estimate the PDF (observed pixel
values),vt are the pixel values observed up to the frameTo,
σ is a smoothing parameter.

The Parzen estimator defined by (3) is a sum of multivariate
Gaussian distributions centered at the observed pixel values.
As the number of observed values approaches infinity, the
Parzen estimator converges to its underlying parent density,
provided that it is smooth and continuous. The smoothing
parameter controls the width of the Gaussians and its impact
on the representation is treated in more detail below. The
scaling factor preceding the sum in (3) has no impact when
Bayes decision rule (2) is used, and can be discarded. Using a
Parzen estimator-based approach it would be enough to store
all the values of a certain pixel observed in the known part
of the sequence. This would still be inefficient, especially
since the values of the background pixels concentrate in a

small part of the value space and are therefore similar. A
representation based on a relatively small number of Gaussians
can be achieved if each Gaussian is used to represent a
portion of observed patterns which are similar according to
the predefined threshold [8]. The procedure is similar to the
binning used by Liet al., but the resultant PDF representation
retains the notion of how close a value that is assigned to a
particular Gaussian is to its center. This is not the case with
the binning, since all the values within a bin are assigned the
same value of PDF. Fig. 2 shows the plot of a Parzen estimator
for three stored points with values in two-dimensional plane
(e.g. if only R and G values for a pixel are considered). The
horizontal planes in Fig. 2 represent the threshold (θ) values
used to decide which feature values are covered by a single
Gaussian. All features within the circle defined by the cross-
section of the Parzen estimate and the threshold plane are
deemed close enough to the center of the peak to be within the
cluster pertinent to the Gaussian. The selection of smoothing
parameter value and the threshold controls the size of the circle
and the cluster. Larger values ofσ lead to less pronounced
peaks in the estimation, i.e. make the estimation ”smoother”.
For a fixed smoothing parameter value, lower values for the
thresholdθ will lead to larger coverage of the space of feature
values by the estimate.

IV. BACKGROUND MODELING NEURAL NETWORK (BNN)

In 1990, Specht [7] introduced a neural network archi-
tecture to be used as a Bayesian classifier, based on the
Parzen estimation of the PDFs involved, and a Bayes decision
rule given by (2). He dubbed these networks Probabilistic
Neural Networks (PNNs). This architecture is a natural way
to implement the classifier described in Section III. The
background segmentation approach proposed here relies on
an adapted PNN component to both classify the pixels and
to store the model of the background within its weights. To
achieve the functionality needed by a probabilistic video object
segmentation algorithm, the adapted PNN component has been
extended and combined with a Winner-Take-All(WTA) neural
network. This resulted in a fairly complex solution with some
unique properties. Namely, the proposed solution is a truly
unsupervised classifier, requiring no training set and it is
capable of on-line learning. To the best of our knowledge, this
is the first PNN-based framework to achieve these properties,
despite the use of PNN classifiers in myriad application
domains [10] [20] [21] [22] [23]. The proposed neural-network
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(a) σ = 12 (b) σ = 24

Fig. 2. Plots of Parzen estimators for different values of ”smoothing parameter”.

is referred to as Background Modeling Neural Network (BNN)
since it is suitable to serve both as a statistical model of
the background at each pixel position in the video sequences
and highly parallelized background subtraction algorithm. As
single BNN is used to model the pixel process and classify
the pixel at a single pixel locationl.

The basic idea that forms the basis of all probabilistic back-
ground modeling and video object segmentation approaches
discussed in Section II and the one presented here, is a direct
consequence of the definition of the background stated in
the introduction:feature values corresponding to background
objects will occur more often than those pertinent to the
foreground.In addition to this assumption, these methods share
a set of common tasks that need to be performed to learn,
update and store the background model that enables efficient
segmentation [3] [4]. These tasks, which have been used as
guidelines in the design of BNN, are:

1) Storing the values of the pixel features and learning
the probability with which each value corresponds to
background / foreground.

2) Determining the state in which new feature values
should be introduced into the model (i.e. when the
statistics already learned are insufficient to make a
decision).

3) Determining which stored feature value should be re-
placed with the new value.

The two latter requirements are consequences of the fact
that real systems are limited in terms of the number of feature
values that can be stored to achieve efficient performance. In
terms of the neural network implementation proposed here this
translates into the number of patterns stored, i.e. the number
of neurons used per pixel.

The structure of BNN, shown in Fig. 3, has three distinct
subnets, corresponding to each of the tasks enumerated above:
classification, activation and replacement. The classification
subnet is the adapted PNN discussed above. It is a central part
of BNN shown in Fig. 3. The classification subnet contains
four layers of neurons annotated at the far right of the Fig. 3.
Input neurons of this network simply map the inputs of the
network, which are the values of the features for a specific
pixel. Each input neuron is connected to all pattern neurons.

The output of the pattern neurons is a nonlinear function of
Euclidean distance between the input of the network and the
stored pattern for that specific neuron. The only parameter
of this subnet is the smoothing parameter (σ) of the Parzen
estimator, discussed previously. The output of a single pattern
neuron corresponds to the value of a single Gaussian of the
PDF estimation for the observed pixel value. Fig. 4 shows
the structure of a pattern neuron of classification subnet. The

Fig. 4. Pattern neuron of PNN.

output of the summation units of the classification subnet
is the sum of their inputs. The subnet has two summation
neurons, each of them connected to all pattern neurons. The
output values of the summation neurons correspond to initial
Parzen estimates of joint probabilitiespl(b, v) andp(f, v) for
the pixel value observed (v). These estimates are input to the
last (output) layer, containing a single neuron. The final output
of the network is a binary value indicating whether the pixel
corresponds to foreground (output high) or background (output
low), i.e. the result of the comparison in (2).

A. Classification Subnet

1) Topology and Learning:The topology of the classifica-
tion subnet is that of a PNN, as is the way in which the patterns
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Fig. 3. Structure of Background Modeling Neural Network.

learnt are stored in the network. We discuss these briefly and
refer the reader to [7] [8] for a more in depth discussion.
In an PNN the patterns are stored in the weights connecting
the input neurons and the pattern neurons. Originally, each
pattern neuron corresponded to a single training pattern, and
the weights of the connections between the input neurons and
the pattern neuron were set to the values of the elements of
the feature vector. This is inefficient and various clustering
methods have been employed to reduce the number of patterns
needed. The clustering method used in BNN is as proposed by
Specht in [8]. It requires no external procedure is to determine
whether a training pattern corresponds to a certain cluster. The
pattern is simply fed to the network and if the output value of
a pattern neuron exceeds a predefined threshold, the pattern
is within the cluster covered by the pattern neuron. If no
neuron achieves significant activation, the network is regarded
as inactive and a pattern neuron is assigned to the pattern.
It becomes a new cluster center. This procedure allows the
network to adapt to the time-varying environment. In BNN
all the values in the pixel processes are considered training
patterns and the network undergoes permanent adaptation, i.e
the training of the network is done on-line.

In the classification subnet of BNN, the weights between the
pattern and summation neurons are used to store the the prior
probabilities inferred for the pattern neuron value (pl(f |v) and
pl(b|v)). Since these values are unknown, rules were formed
which allow the BNN to estimate them based on the observed
parts of a pixel process and the frequency of specific feature
values observed. The weights of these connections are updated
with each new value of a pixel at a certain position received
(i.e. with each frame), according to the following recursive
equations:

W t+1
ib = fc((1 −

β

Npn
) ∗ W t

ib + MAtβ) (4)

W t+1
if = 1 − W t+1

ib (5)

whereW t
ib is the value of the weight between thei-th pattern

neuron and the background summation neuron at timet, W t
if

is the value of the weight between thei-th pattern neuron and

the foreground summation neuron at timet, β is the learning
rate, Npn is the number of the pattern neurons of BNN,fc

is a clipping function defined by (6) andMAt indicates the
neuron with the maximum response (activation potential) at
frame t, according to (7).

fc(x) =

{

1, x > 1
x, x ≤ 1

(6)

MAt =

{

1, for neuron with maximum response;
0, otherwise.

(7)

Equations (4) and (5) express the notion that whenever
an instance pertinent to a pattern neuron is encountered, the
probability that that pattern neuron is activated by a feature
value belonging to the background is increased. Naturally,if
that is the case, the probability that the pattern neuron is
excited by a pattern belonging to foreground is decreased.
Conversely, the more seldom a feature value corresponding
to a pattern neuron is encountered, the more likely it is that
the patterns represented by it belong to foreground objects.
Since the PDF value of a single pattern is increased, while
all the others are decreased, the decay rate is set to a value
smaller than the increase rate by a factor equal to the number
of stored patterns (pattern neurons). By adjusting the learning
rate (β), it is possible to control the speed of the learning
process.

2) Convergence of the Learning Process:Let To and Tno

denote the number of frames in the sequence in which certain
feature value of a pixel is observed and the number of frames
in which it is not observed, respectively. Naturally, the overall
number of frames in the sequenceT is:

T = Tno + To (8)

If a simplifying assumption is made, that the feature value
is not observed for the firstTno frames of the sequence and
then observed forTo frames, the weights for the pattern neuron
corresponding to the feature value are determined by equations
(4)-(7):

WT
ib = (1 −

β

Npn
)Tno · W 0

ib + Toβ (9)
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WT
if = 1 − WT

ib (10)

where W 0
ib corresponds to the initial weight set when the

pattern is first observed. The initial weight has low value
(W 0

ib ≪ 1), to indicate that it is not likely that the value
observed for the first time corresponds to a background pixel.
In addition, the values of the learning parameter are between
0 and 1. Observe that:

β ≪ Npn (11)

Therefore:
WT

ib ≈ Toβ (12)

Thus, if a pixel value is encountered in1β consecutive frames
it will be classified as background with maximum support. On
the other hand the confidence that a feature value belongs to
the background will decay from the maximum to(1− β

Npn

)Tno

if it is not encountered forTno frames.

B. Activation and Replacement Subnets

The adaptation of the classification subnet requires the BNN
to be able to detect the state of low activation of all the
neurons in the net. This indicates that the feature value fed
to the network is not within the clusters stored and that the
feature value should be stored in the network weights as a new
cluster center. The activation part of BNN is concerned with
the detection of this state. In addition, when the new value is
to be stored, the network must be able to decide which pattern
neuron’s weights are to be replaced with new ones. This is the
function of the replacement subnet.

The activation and replacement subnets are WTA neural
networks. A WTA network is a parallel and fast way to
determine minimum or the maximum of a set of values. In
particular, these subnets are extensions of one-layer feedfor-
ward MAXNET (1LF-MAXNET) proposed in [9].

To detect the state of low activation in BNN the activation
subnet determines which of the neurons of the network has
maximum activation (output) and whether that value exceeds
a threshold provided as a parameter to the algorithm. If it does
not, the BNN is considered inactive and new cluster center
learning process is initiated. If the network is inactive, the
pixel is considered to belong to a foreground object, since
this is a value that has not been present in the background
model.

The first layer of the activation network has the structure ofa
1LF-MAXNET network and a single neuron is used to indicate
whether the network is active. The output of the neurons of
the first layer of the network can be expressed in the form of
the following equation (see Fig. 5):

Yj = Xj ×

P
∏

i=1

{F (Xj − Xi|i 6= j)} (13)

where:

F (z) =

{

1, if z ≥ 0;
0, if z < 0;

(14)

As the (13) and (14) indicate, the output of the first layer of
the activation subnet will differ from 0 only for the neurons

with maximum activation and will be equal to the maximum
activation. In Fig. 3 these outputs are indicated withZ1, , ZP .
The structure of a processing neuron of 1LF-MAXNET is
shown in Fig. 5. A single neuron in the second layer of the

Fig. 5. Processing neuron of a 1LF-MAXNET structure.

activation subnet is concerned with detecting whether the BNN
is active or not and its function can be expressed in the form
of the following equations:

NA = F (

P
∑

i=1

Zi − θ) (15)

whereF is given by (14) andθ is the activation threshold,
which is provided to the network as a parameter. Finally, the
replacement subnet in Fig. 3 can be viewed as a separate neural
net with the unit input. However, it is inextricably relatedto
the classification subnet since each of the replacement subnet
first-layer neurons is connected with the input via synapses
that have the same weight as the two output synapses be-
tween the pattern and summation neurons of the classification
subnet. Each pattern neuron has a corresponding neuron in
the replacement net. The function of the replacement net is
to determine the pattern neuron that minimizes the criterion
for cluster center replacement, expressed by the following
equation:

replacement criterion = W t
if + |W t

ib − W t
if | (16)

The criterion is a mathematical expression of the idea that
those patterns that are least likely to belong to the background
and those that provide least confidence to make the decision
should be the first to be eliminated from the model.

The neurons of the first layer calculate the negated value
of the replacement criterion for the pattern neuron they cor-
respond to. This inversion of the sign is done to enable the
use of 1LF-MAXNET component to detect the lowest value
of the criterion. The second layer of the network is a 1LF-
MAXNET that yields non-zero output corresponding to the
pattern neuron to be replaced.

C. Hardware implementation considerations

Suitability of the proposed solution for hardware implemen-
tation is a primary concern in our research.
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Since each neuron within a layer of the BNN is able of
performing its function in parallel, the proposed approachis
parallelized on a sub-pixel level. More precisely, it is parallel
on the level of a single pattern stored for a pixel, since the
pattern neurons of the classification subnet are able to perform
their calculations in parallel.

The presence of the WTA networks eliminates the need for
sorting operations employed both in the hybrid approach of Li
et al. and MoG. In addition, there is no need to perform any
operations on the whole frame, such as histogram extraction
for adaptive thresholding performed in the approach of Liet
al. [24], which limit the extent to which the approach can be
parallelized and make the speed of segmentation dependent
on the size of the frame. No publications have been identified
dealing with parallel or hardware implementations of MoG and
the approach of Liet al.. However, Liet al. report [4] that their
approach can achieve processing speed of 15 fps for 160×120
pixel large frames and 3 fps for 320×240 pixel large frames
when run on a 1.7 GHz Pentium CPU. For MoG containing 5
Gaussians per pixel, processing rate of 11 to 13 fps (frame size
160×120 pixels), on an SGI O2 with an R10000 processor,
has been reported [3].

The speed of the segmentation of the proposed approach,
in a parallel hardware-implementation, does not depend on
the size of the frame. The delay of the network (segmentation
time) corresponds to the time needed by the signal to propagate
through the network and time required to update it. In a
typical FPGA implementation this can be done in less than 20
clock cycles, which corresponds to a 2 ms delay through the
network, for a FPGA core running at 10 MHz clock rate. Thus,
the networks themselves are capable of achieving a throughput
of some 500 fps, which is more than sufficient for real-time
segmentation of video sequences.

BNN is clearly suitable to serve as basis for efficient
hardware implementation.

V. EXPERIMENTS AND RESULTS

To evaluate the performance of the neural network a sequen-
tial PC based implementation has been developed. Previously,
experiments have been conducted on a set of sequences
pertinent to marine surveillance [6]. Here, a set of diversese-
quences containing complex background conditions, provided
by Li et al. [4] and publicly available athttp://perception.i2r.a-
star.edu.sg, was used. The results of the segmentation were
evaluated both qualitatively and quantitatively, using a set of
ground truth frames provided by the same authors for the
different sequences. To evaluate the performance of the ap-
proach, a well-known probabilistic modelling approach MoG
[3] and the approach of Liet al. [4], have been implemented
and the segmentation results of different algorithms compared.
Same pixel feature, namely its intensity value was used for all
approaches. Since all three are general in terms of features
used, the intent is to compare base-line modelling and clas-
sification ability rather than explore the problem of selecting
the best features in order to achieve best segmentation results.
Note however, that use of different features can affect the
segmentation quality and that employing different features

TABLE I

LEARNING RATE USED IN EXPERIMENTS.

CAM SW FT WS MR

β 0.05 0.003 0.01 0.01 0.003

LB SC AP BR SS

β 0.01 0.01 0.03 0.003 0.05

should be considered as a possibility both in applications and
as a venue to further explore the quality of the proposed
method.

The neural networks used in the experiments are fairly sim-
ple. The simulation application implements BNNs containing
30 pattern neurons in their classification subnets. With the
additional two summation and one output neuron required
in the classification subnet (see Fig. 3), the total number
of neurons in this part of BNN is 33. The input neurons
of the classification shown in Fig. 3 just map the input
to the output and need not be implemented as such. The
number of neurons required in the activation and replacement
subnets is determined by the number of pattern neurons of the
classification subnet. These two subnets attribute for additional
31 neurons in the activation subnet and 60 processing units in
the replacement subnet. Thus, the total number of neurons in
a single BNN used is 124. A single BNN is used to model
the background at a single pixel.

The learning rate (β) varied from sequence to sequence
between three different settings (0.05, 0.01 and 0.003) as
shown in Table I. The learning rates have been set based on
the observed speed of motion of the objects in the foreground
and rate of changes in the background. Larger learning rates
enable the network to learn the changes corresponding to
background faster but lead to faster absorption of stationary
foreground objects by the background model. Lower learning
rates make the network slower to adapt to sudden changes in
the background (e.g. due to switching of lights) but will make
the model less prone to errors due to absorption of stationary
foreground objects.

The smoothing parameter (σ) for the classification subnet
used was set to 7 (a value approximately twice the size
standard deviation of the intensity values for a single pixel) .
The activation threshold (θ) of the activation subnet was set
to 0.5, meaning that the values further than≈ 1.18σ form the
pattern neuron weights were deemed outside the scope of the
cluster covered by that particular neuron.

The results for MoG were obtained for a mixture containing
30 Gaussians, to ensure a fair comparison. While the authors
suggest the use of 3-5 Gaussians in the mixture to achieve
real-time performance [3], they speculated that a larger number
of Gaussians would lead to better segmentation results. The
initial value of the deviation for MoG was set to the value
of the smoothing parameter of BNN (7) while the threshold
selecting the number cases to be covered by Gaussians used
in the decision process was set to 0.5. A Gaussian covered the
values within 2.5 standard deviations of the mean, as suggested
in [3]. The learning rates for the MoG were set to the same
values as for the BNN.
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In the experiments with the approach of Liet al. the number
of pixel intensity values and pixel intensity co-occurrence
values was adopted from [17]. No binning of the intensity
values was performed, while bins of width 4 were used for co-
occurrence features. In addition, to ensure a fair comparison,
the probabilistic background model has been updated based
on the initial segmentation results, before the application of
morphological processing, as it was done for the other two
approaches. The learning rates used for the experiments were
those suggested in [4]. While Liet al. suggest that the same
learning rates should be used for their approach and MoG [4],
they do not consider the interplay of two different learning
rates used on the two levels of their algorithm. Thus, this
suggestion was not followed in the experiments performed
here.

Morphological operations such as morphological closing
and opening as well as connected components algorithm and
the elimination of small objects have been used to enhance the
segmentation results, as it was done in [4]. All the segmenta-
tion results, along with the binaries used for segmentationand
MATLAB scripts to perform the morphological processing and
extract the statistics used for quantitative comparison can be
found athttp://mlab.fau.edu.

A possible alternative to morphological processing could be
the use of a still image segmentation algorithm, such as that
proposed by Blekaset al. [25] to enhance the segmentation
results. The resulting algorithm would have the benefit of
exploiting spatial information. To improve the performance,
still image segmentation could be localized to regions already
detected as foreground.

A. Qualitative Results

Qualitative evaluation of the segmentation results is per-
formed by visual inspection. In this section a number of
representative frames from the test sequences is presented. We
discuss the nature and the causes of complexity of background
changes. The discussion is limited and the reader is referred
to [4] for a more in-depth treatment.

Ten testing sequences were obtained in several different
environments. Rather than following the classification origi-
nally used in [4], they are grouped here based on the sources
of complexity in background variation, pertinent to each
environment. Three groups of sequences (environments) are
identified:

1) Outdoor environments.
2) Small indoor environments.
3) Large (public) indoor environments.

The sources of complexity in the sequences obtained in
outdoor environments are usually due to objects moved by
wind (e.g. fig3 or waves) and illumination changes due to
changes in cloud cover. For small indoor environments, such
as offices, the source of complexity related mostly to ob-
jects such as curtains or fans moving in the background or
screens flickering. The illumination changes are mostly dueto
switching lights on and off. Large public indoor environments
(e.g. subway stations, airport halls, shopping centers etc.)
are characterized by lighting distributed from the ceilingand

presence of secular surfaces, inducing complex shadow and
glare effects. In addition, these spaces can contain large
moving objects such as escalators and elevators.

Initial results presented in [6] are concerned with outdoor
sequences with background containing water surfaces as well
as objects undergoing motion due to wind. To evaluate the
segmentation results for the outdoor environments further,
four sequences were used. The first sequence is of a campus
environment (CAM), showing vehicles and pedestrians moving
along a road in front of a thicket of fig3 moving rapidly in
the wind. Second is that of a sidewalk (SW) with pedestrians
moving along. The complexity of the background in the third
sequence (FT) is due to a water fountain. The fourth (WS) is
a sequence of a person at walking at a waterfront, and the
complexity is due to the water-surface in the background.
The proposed algorithm was able to cope with complex
background variation in all these sequences. Representative
frames and corresponding segmentation results are given in
Figs. 6,7,8 and 9, for the sequences CAM, SW, FT and
WS, respectively. The figures show the original frame, the
segmentation result obtained using BNN, ground truth frame,
segmentation result of MoG and segmentation result for the
model of the background proposed by Liet al., from left to
right. The ground truths are manually segmented frames. All
the images referred to in this subsection have the same format.

Two sequences are used to test the performance for small
indoor environments. The first was captured in a meeting room
(MR) with the curtain moving in the background. The second
(LB) was taken in the lobby of the office building, with the
lights switching on and off. Representative frames for the two
sequences are shown in Figs. 10 and 11.

Four sequences pertinent to large indoor environments were
used. They were taken in a shopping center (SC), an airport
(AP), a buffet restaurant (BR) [2] and a subway station
(SS). They illustrate the capability of the approach to cope
with shadow effects. The subway station sequence contains
moving escalators in the background. Segmentation resultsfor
these sequences are illustrated in Figs. 12,13,14 and 15. The
algorithm was able to learn the behavior of the escalators in
the SS sequence and absorb them into the background. The
algorithm does not incorporate shadow cancellation and has
in some cases segmented the shadows as foreground objects
as shown in 14(b). A possible solution to this problem lies
in the use of features able to cope with these effects, as are
features in gradient domain proposed in [26]. In addition, a
more sophisticated approach, such as that proposed by Guet
al. [27], could be applied to the segmented regions, to remove
shadows at the higher levels of processing.

An additional weakness of the the proposed algorithm
is the tendency to incorporate foreground objects, that stop
moving for extended periods of time, into the background.
This is a weakness of all background modeling segmentation
approaches, stemming from the basic definitions of back-
ground and foreground stated above. A possible solution to
this problem is the use of top-down information from higher-
level object tracking and recognition algorithms.
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(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 6. Segmentation of the campus sequence (CAM).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 7. Segmentation of the buffet sidewalk sequence (SW).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 8. Segmentation of the water fountain sequence (FT).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 9. Segmentation of the water surface sequence (WS).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 10. Segmentation of the meeting-room sequence (MR).
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(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 11. Segmentation of the office-building lobby sequence (LB).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 12. Segmentation of the shopping center sequence (SC).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 13. Segmentation of the airport sequence (AP).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 14. Segmentation of the buffet restaurant sequence (BR).

(a) Original frame. (b) BNN segmentation result. (c) Ground truth. (d) MoG result. (e) Li et al. result.

Fig. 15. Segmentation of the subway-station sequence (SS).
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TABLE II

SIMILARITY MEASURE VALUES FOR EACH TEST SEQUENCE.

CAM SW FT WS MR

BNN 0.5256 0.6216 0.4636 0.7540 0.7368

MoG 0.0757 0.5861 0.6854 0.7948 0.7580

Li et al. 0.1596 0.1032 0.0999 0.0667 0.1841

LB SC AP BR SS

BNN 0.6276 0.5696 0.3923 0.4779 0.4928

MoG 0.6519 0.5363 0.3335 0.3838 0.1388

Li et al. 0.1554 0.5209 0.1135 0.3079 0.1294

B. Quantitative Evaluation

For each of the ten test sequences we calculate a measure
of the segmentation accuracy following the methodology used
in [17]. If D is a detected(segmented) region andG the cor-
responding ground truth, then the similarity measure between
these two regions is defined as:

S =
D ∩ G

D ∪ G
(17)

The similarity of the regions (S) reaches the maximum value
of 1 if they are the same. Otherwise, it varies between 1 and
0 according to how similar the regions are.S is the measure
of the overall misclassification. The values ofS obtained for
test sequences along with the values provided by Liet al. for
the MoG and their own approach are given in Table II. The
average values obtained for the three approaches are 0.566,
0.494 and 0.184 for BNN, MoG and the approach of Liet al.,
respectively.

As Table II indicates, proposed approach achieved better
segmentation results than the MoG containing the same num-
ber of Gaussians as there are pattern neurons in the BNN.
The approach proposed by Liet al. performed poorly when
only intensity values and their co-occurrences are used for
segmentation. This is quite different than the result reported
in [4]. The discrepancy is probably due to the fact that the
authors used higher-level features and first order moments in
addition to intensity values to classify pixels.

VI. CONCLUSION

A novel background modeling and subtraction approach for
video object segmentation in complex sequences has been
proposed. The proposed method is probabilistic and relies
on a neural network to achieve estimation of required PDFs
and segmentation. NewBackground modeling Neural Network
(BNN) architecture has been proposed and rules for adaptation
of its weights have been formulated. The network is a truly
unsupervised classifier, differing from previously published
approaches. The algorithm is parallel on a sub-pixel level.Of
the published segmentation approaches, it is most suitablefor
an efficient hardware implementation.

The approach was evaluated on a set of diverse sequences,
pertinent to the automatic surveillance application domain.
Good segmentation results have been obtained for these
complex sequences. The proposed approach represents an

improvement in segmentation ability when compared to a
well known pure probabilistic approach MoG. For several
sequences MoG featuring 30 Gaussians achieved better results
(FT, WS, MR and LB). This result indicates that the proposed
approach could benefit from introduction of adaptive kernel
width and center. Both MoG and the proposed approach
performed significantly better than the hybrid model-based
approach of Liet al., when the pixel intensity values are used
as the basis for segmentation.

The approach is independent of the features used to achieve
segmentation and use of features other than intensity values
should be explored to enhance the segmentation results, espe-
cially in terms of shadow suppression. The approach would
also benefit from the introduction of mechanisms that would
allow it to exploit spatial information, typically used in still
image segmentation. Currently, the extension of the approach
to use the feedback from higher processing modules of object
tracking to enhance the segmentation, is being examined. Such
top-down control could be used to cope with the problem of
foreground objects being absorbed by the background.
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